Skip to main content

Isolation and Characterization of Retinal Endothelial Cells

  • Protocol
The Blood-Brain Barrier

Part of the book series: Methods in Molecular Medicineā„¢ ((MIMM,volume 89))

Abstract

Primary vascular endothelial cell cultures provide powerful systems to investigate the molecular architecture and regulation of the blood-brain and blood-retinal barriers. Most investigators agree that in vitro models of endothelial cells alone do not completely recapitulate the strong resistance barrier achieved in vivo by the blood vessels in these neural tissues. However, in vitro models provide a number of advantages that make this a highly useful system to study the transport of molecules across an endothelial monolayer. First, the system is highly defined; the investigator has control over the cell types that are present as well as the timing and degree of the perturbation applied to the system. Thus, the direct effect of a hormone or physical stress on endothelial cell transport properties can be determined and highly precise measures for time course and dose response can be made. Second, precise rate measures can be made and compared between different molecules. The effect of size and charge on solute transport rate may be determined and the rate of water, ion, and solute flux can be directly compared. Also, with the appropriate system, real-time measures of changes in transport rate after a specific perturbation may be characterized. Third, in vitro systems allow a means to rapidly dissect the molecular mechanisms employed to regulate endothelial cell barrier properties. Through the use of specific cell-signaling inhibitors, neutralizing antibodies, and transfection experiments an investigator can readily move to an understanding of the molecular mechanisms employed in endothelial cells to develop, maintain, and regulate the blood-brain and blood-retinal barrier. In combination with in vivo studies, cell culture models continue to provide an important research tool in the arsenal of the investigator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Raviola, G. (1977) The structural basis of the blood-ocular barriers. Exp. Eye Res. 25 (Suppl.), 27ā€“63.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  2. Farquhar, M. G., and Palade, G. (1963) Junctional complexes in various epithelia. J. Cell Biol. 17, 375ā€“412.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  3. Cunha-Vaz, J. G., Shakib, M., and Ashton, N. (1966) Studies on the permeability of the blood-retinal barrier. I. On the existence, development, and site of a blood-retinal barrier. Br. J. Ophthalmol. 50, 441ā€“453.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  4. Shakib, M., and Cunha-Vaz, J. G. (1966) Studies on the permeability of the blood-retinal barrier. IV. Junctional complexes of the retinal vessels and their role in the permeability of the blood-retinal barrier. Exp. Eye Res. 5, 229ā€“234.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  5. Fanning, A. S., Mitic, L. L., and Anderson, J. M. (1999) Transmembrane proteins in the tight junction barrier. J. Am. Soc. Nephrol. 10, 1337ā€“1345.

    PubMedĀ  CASĀ  Google ScholarĀ 

  6. Kniesel, U., and Wolburg, H. (2000) Tight junctions of the blood-brain barrier. Cell. Molecular Neurobiol. 20, 57ā€“76.

    ArticleĀ  CASĀ  Google ScholarĀ 

  7. Morita, K., Furuse, M., Fujimoto, K., and Tsukita, S. (1999) Claudin multigene family encoding four-transmembrane domain protein components of tight junction strands. Proc. Natl. Acad. Sci. USA 96, 511ā€“516.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  8. Van Itallie, C., Rahner, C., and Anderson, J. M. (2001) Regulated expression of claudin-4 decreases paracellular conductance through a selective decrease in sodium permeability. J. Clin. Invest. 107, 1319ā€“1327.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  9. Simon, D. B., Lu, Y., Choate, K. A., et al. (1999) Paracellin-1, a renal tight junction protein required for paracellular Mg2+ resorption. Science 285, 103ā€“106.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  10. Calderon, V., Lazaro, A., Contreras, R. G., et al. (1998) Tight junctions and the experimental modification of lipid content. J. Membrane Biol. 164, 59ā€“69.

    ArticleĀ  CASĀ  Google ScholarĀ 

  11. Hasegawa, H., Fujita, H., Katoh, H., et al. (1999) Opposite regulation of transepithelial electrical resistance and paracellular permeability by Rho in Madin-Darby canine kidney cells. J. Biol. Chem. 274, 20,982ā€“20,988.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  12. Balda, M. S., Whitney, J. A., Flores, S., Gonzalez, M., Cereijido, M., and Matter, K. (1996) Functional dissociation of paracellular permeability and transepithelial electrical resistance and disruption of the apical-basolateral intramembrane diffusion barrier by expression of a mutant tight junction membrane protein. J. Cell Biol. 134, 1031ā€“1049.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  13. Wong, H. C., Boulton, M., Marshall, J., and Clark, P. (1987) Growth of retinal capillary endothelia using pericyte conditioned medium. Invest. Ophthalmol. Vis. Sci. 28, 1767ā€“1775.

    PubMedĀ  CASĀ  Google ScholarĀ 

  14. Laterra, J., and Goldstein, G. W. (1991) Astroglial-induced in vitro angiogenesis: requirements for RNA and protein synthesis. J. Neurochem. 57, 1231ā€“1239.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  15. Gardner, T. W. (1995) Histamine, ZO-1 and blood-retinal barrier permeability in diabetic retinopathy. Trans. Am. Ophthalmol. Soc. 93, 583ā€“621.

    PubMedĀ  CASĀ  Google ScholarĀ 

  16. Chang, Y. S., Munn, L. L., Hillsley, M. V., et al. (2000) Effect of vascular endothelial growth factor on cultured endothelial cell monolayer transport properties. Microvasc. Res. 59, 265ā€“277.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  17. Antonetti, D. A., Wolpert, E. B., DeMaio, L., Harhaj, N. S., and Scaduto, R. C. (2002) Hydrocortisone decreases retinal endothelial cell water and solute flux coincident with increased content and decreased phosphorylation of occludin. J. Neurochem. 80, 667ā€“677.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  18. Claude, P. (1978) Morphological factors influencing transepithelial permeability: a model for the resistance of the Zonula occludens. J. Membrane Biol. 39, 219ā€“232.

    ArticleĀ  CASĀ  Google ScholarĀ 

  19. Madara, J. L. (1998) Regulation of the movement of solutes across tight junctions. Annu. Rev. Physiol. 60, 143ā€“159.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2003 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Antonetti, D.A., Wolpert, E.B. (2003). Isolation and Characterization of Retinal Endothelial Cells. In: Nag, S. (eds) The Blood-Brain Barrier. Methods in Molecular Medicineā„¢, vol 89. Humana Press. https://doi.org/10.1385/1-59259-419-0:365

Download citation

  • DOI: https://doi.org/10.1385/1-59259-419-0:365

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-073-1

  • Online ISBN: 978-1-59259-419-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics