Skip to main content

Immunogold Detection of Microvascular Proteins in the Compromised Blood-Brain Barrier

  • Protocol
The Blood-Brain Barrier

Part of the book series: Methods in Molecular Medicineā„¢ ((MIMM,volume 89))

  • 1689 Accesses

Abstract

Few techniques have approached the high resolution afforded by immunoelectron microscopy using gold markers for the detection of specific cellular proteins and other molecules (1) or by post-embedding procedures (2). In principal, a primary antibody to a particular protein, which has been fixed, embedded, and placed on a grid, is identified by a host-specific secondary antibody conjugated to a gold particle of defined size. The gold particle identifying the targeted protein is then detected by electron microscope observation. This method has undergone a steady development over the past few years, because it uniquely meets the need to precisely assign macromolecules to specific locations and domains within both tissues and cells. It has also been used to reveal antigens that may be present in low or trace amounts and thus, has contributed to a greater understanding of functional specialization domains within cells and tissues. Its advantages over light microscopic immunocytochemistry and confocal immunofluorescence localization studies are that it can be carried out on very minute specimens and that it can provide a permanent record for quantitative analyses of multiple domains. Its disadvantage is that, because of the small tissue size, more sampling is needed and more expertise is required in handling, thus requiring more overall experimental time. Additionally, the operation of an electron microscope (EM) can result in prohibitive costs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Verkleij A., and Leunissen, J. L. M. (1989) Immuno-Gold Labelling in Cell Biology. CRC Press, Boca Raton, FL.

    Google ScholarĀ 

  2. Mayer, G., and Bendayan, M. (2001) Amplification methods for the imunolocalization of rare molecules in cells and tissues. Prog. Histochem. Cytochem. 36, 3ā€“85.

    PubMedĀ  CASĀ  Google ScholarĀ 

  3. Jensen, H. L., and Norrild, B. (1999) Easy and reliable double-immunogold labelling of herpes simplex virus type-1 infected cells using primary monoclonal antibodies and studied by cryosection electron microscopy. Histochem. J. 31, 523ā€“533.

    ArticleĀ  Google ScholarĀ 

  4. Renno, W. M. (2001) Post-embedding double-gold labeling immunoelectron microscopic co-localization of neurotransmitters in the rat brain. Med. Sci. Monit. 7, 188ā€“200.

    PubMedĀ  CASĀ  Google ScholarĀ 

  5. Wang, X. S., Ong, W. Y., Lee, H. K., and Huganir, R. L. (2000) A light and electron microscopic study of glutamate receptors in the monkey subthalamic nucleus. J. Neurocytol. 29, 743ā€“754.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  6. Cahill, C. J., and Nayak, R. C. (2000) Immunoelectron microscopic detection of tissue ganglioside antigens. J. Immunol. Methods 238,45ā€“53.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  7. Farrell, C. L., and Pardridge, W. M. (1991) Ultrastructural localization of blood-brain barrier specific antibodies using immunogold-silver enhancement techniques. J. Neurosci. Methods 37, 103ā€“110.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  8. Cornford, E. M., and Hyman, S. (1999) Blood-brain barrier permeability to small and large molecules. Adv. Drug Delivery Rev. 36,145ā€“163.

    ArticleĀ  CASĀ  Google ScholarĀ 

  9. Leino, R. L., Gerhart, D. Z., and Drewes, L. R. (1999) Monocarboxylic acid transporter (MCT1) abundance in brains of suckling and adult rats: a quantitative electron microscopic immunogold study. Brain Res. Dev. Brain Res. 113,47ā€“54.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  10. Nico, B., Quondamatteo, F., Herken, R., et al. (1999) Developmental expression of ZO-1 antigen in the mouse blood-brain barrier. Brain Res. Dev. Brain Res. 114,161ā€“169.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  11. Gajkowska, B., and Mossakowski, M. J. (1997) Endothelin-loke immunoreactivitiy in hippocampus following transient global cerebral ischemia. II. The blood-brain interphase. Folia Neuropathol. 35, 49ā€“59.

    PubMedĀ  CASĀ  Google ScholarĀ 

  12. Easton, A. S., and Dorovini-Zis, K. (2001) The kinetics, function, and regulation of p-selectin expressed by human brain microvessel endothelial cells in primary culture. Microvasc. Res. 62, 335ā€“345.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  13. Sierralta, W. D. (2001) Immunoelectron microscopy in embryos. Methods 24, 61ā€“69.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  14. Paupard, M. C, Miller, A., Grant, B., Hirsh, D., and Hall, D. H. Immuno-EM localization of GFP-tagged yolk proteins in C. elegans using microwave fixation. J. Histochem Cytochem. 49, 949ā€“956.

    Google ScholarĀ 

  15. Rangell, L. K., and Keller, G. A. (2000) Application of microwave technology to the processing and immunolabeling of plastic-embedded and cryosections. J. Histochem. Cytochem. 48, 1153ā€“1159.

    PubMedĀ  CASĀ  Google ScholarĀ 

  16. Farrell, C. L., and Pardridge, W. M. (1991) Blood-brain barrier glucose transporter is asymmetrically distributed on brain capillary endothelial lumenal and ablumenal membranes: An electron microscopic immunogold study. Proc. Natl. Acad. Sei. USA 88, 5779ā€“5783.

    ArticleĀ  CASĀ  Google ScholarĀ 

  17. Ramandeep, Dikshit, K. L., and Raje, M. (2001) Optimization of immunogold labeling TEM. An ELISA-based method for rapid and convenient simulation of processing conditions for quantitative detection of antigen. J. Histochem. Cytochem. 49, 355ā€“368.

    PubMedĀ  CASĀ  Google ScholarĀ 

  18. Brorson, S. H. (1998) Comparison of the immunogold labeling of single light chains and whole immunoglobulins with anti-kappa on LR-white and epoxy sections. Micron 29,439ā€“443.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  19. Vorbrodt, A. W., Dobrogowska, D. H., Meeker, H. C, and Carp, R. I. (1999) Immunogold study of regional differences in the distribution of glucose transporter (GLUT-1) in mouse brain associated with physiological and accelerated aging and scrapie infection. J. Neurocytol. 28, 711ā€“719.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  20. Vorbrodt, A. W., Dobrogowska, D. H., Kozlowski, P., Tarnawski, M., Dumas, R., and Rabe, R. (2001) Effect of a single embryonic exposure to alcohol on glucose transporter (GLUT-1) distribution in brain vessels of aged mouse. J. Neurocytol. 30,167ā€“174.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  21. Vorbrodt, A. W., Dobrogowska, D. H., Tarnawski, M., Meeker, H. C, and Carp, R. I. (2001b) Quantitative immunogold study of glucose transporter (GLUT-1) in five brain regions of scrapie-infected mice showing obesity and reduced glucose tolerance. Acta Neuropathol. (Berl.) 102, 278ā€“284.

    CASĀ  Google ScholarĀ 

  22. Thorpe, J. R. (1999) The application of LR gold resin for immunogold labelling. Methods Mol. Biol. 117, 99ā€“110.

    PubMedĀ  CASĀ  Google ScholarĀ 

  23. Reynolds, E. S. (1963) The use of lead citrate at high pH as an electron opaque stain in electron microscopy. J. Cell Biol. 17, 208ā€“213.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  24. Cornford, E. M., Hyman, S., Cornford, M. E., Landaw, E. M., and Delgado-Escueta, A. V (1998) Interictal seizure resections show two configurations of endothelial Glut1 glucose transporter in the human blood-brain barrier. J. Cereb. Blood Flow Metab. 18, 26ā€“42.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  25. Liwnicz, B. H., Leach, J. L., Yeh, M. S., and Privatera, M. (1990) Pericyte degeneration and thickening of basement membranes of cerebral micro vessels in complex partial seizures: electron microscopic study of surgically removed tissue. Neurosurgery 26, 409ā€“420.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  26. Takata, K., Kasahara, T, Kasahara, M., Ezaki, O., and Hirano, H. (1991) Localization of Na+-dependent active type and erythrocyte/HepG2-type glucose transporters in rat kidney: immunofluorescence and immunogold study. J. Histochem. Cytochem. 39, 287ā€“298.

    PubMedĀ  CASĀ  Google ScholarĀ 

  27. Bendayan, M., Roth., J., Perrelet, A., and Orci, L. (1980) Quantitative immunocytochemical localisation of pancreatic secretory proteins of the rat acinar cell. J. Histochem. Cytochem. 28,149ā€“160.

    PubMedĀ  CASĀ  Google ScholarĀ 

  28. Craig, S. and Goodchild, D. J. (1982) Postembedding immunolabelling. Some effects of tissue preparation on he antigenicity of plant proteins. Eur. J. Cell Biol. 28, 251ā€“256.

    PubMedĀ  CASĀ  Google ScholarĀ 

  29. Cornford, E. M., Hyman, S., and Pardridge, W. M. (1993) An electron microscopic immunogold analysis of developmental upregulation of the blood-brain barrier GLUT1 glucose transporter. J. Cereb. Blood Flow Metab. 663, 7ā€“18.

    Google ScholarĀ 

  30. Cornford, E. M., Hyman, S., Cornford, M. E., Damian, R. T., and Raliegh, M. J. (1998) A single glucose transporter configuration in normal primate brain endothelium: Comparison with resected human brain. J. Neuropath. Expl. Neurol. 57, 699ā€“713.

    ArticleĀ  CASĀ  Google ScholarĀ 

  31. Wolff, J. R., and Bar, T. (1972) ā€œSeamlessā€ endothelia in brain capillaries during development of the ratā€™s cerebral cortex. Brain Res. 41,17ā€“24.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  32. Brightman, M.W., and Kaya, M. (2000) Permeable endothelium and the interstitial space of brain Cell. Mol. Neurobiol. 20,111ā€“130.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  33. Kaya, M., Chang, L., Truong, A., and Brightman, M. W. (1996) Chemical induction of fenestrae in vessels of the blood brain barrier. Exp. Neurol. 142, 6ā€“13.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  34. Hashizume, K., and Black, K. L. (2002) Increased endothelial vesicular transport correlates with increased blood-tumor barrier permeability induced by bradykinin and leukotriene C4. J. Neuropath. Expl. Neurol. 61, 725ā€“735.

    CASĀ  Google ScholarĀ 

  35. Fischbarg, J., Kuang, K. Y., Hirsch, J., Lecuona, S., Rogozuiaski, L., and Silverstein, S. C. (1989) Evidence that the glucose transporter serves as a water channel. Proc. Natl. Acad. Sci. USA 86, 8397ā€“8401.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  36. Fischbarg, J., Kuang, K. Y., Vera, J. C, Arant, S., Silverstein, S. C, Loike, J., and Rosen, O. M. (1990) Glucose transporters serve as water channels. Proc. Natl. Acad. Sci. USA 87, 3244ā€“3247.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  37. Loike, J. D., Cao, L., Kuang, K., Vera, J. C, Silverstein, S. C, and Fischbarg, J. (1993) Role of facilitative glucose transporters in diffusional water permeability through J744 cells. J. Gen. Physiol. 102, 897ā€“906.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  38. Fischbarg, J., and Vera, J. C. (1995) Multifunctional transporter models: Lesson from the transport of water sugars and ring compounds by GLUTs. Amer. J. Physiol. 268, C1077ā€“C1089.

    PubMedĀ  CASĀ  Google ScholarĀ 

  39. Pappenheimer, J. R., and Setchell, B. P. (1973) Cerebral glucose transport and oxygen consumption in sheep and rabbits. J. Physiol. London 233, 529ā€“551.

    PubMedĀ  CASĀ  Google ScholarĀ 

  40. Pardridge, W. M., and Oldendorf, W. H. (1975) Kinetics of blood-brain barrier transport of hexoses. Biochim. Biophys. Acta 382, 377ā€“392.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  41. Gjedde, A., and Christensen, O. (1984) Estimates of Michaelis-Menten constants for the two membranes of the brain endothelium. J. Cereb. Blood Flow Metab. 4, 241ā€“249.

    PubMedĀ  CASĀ  Google ScholarĀ 

  42. Cunningham, V J., Hargreaves, R. J., Pelling, D., and Moorhouse, S. R, (1986) Regional blood-brain glucose transfer in the rat: A novel double-membrane kinetic analysis. J. Cereb. Blood Flow Metab. 6, 305ā€“314.

    PubMedĀ  CASĀ  Google ScholarĀ 

  43. Hargreaves, R. J., Planas, A. M., Cremer, J. E., and Cunningham, V J. (1986) Studies on the relationship between cerebral glucose transport and phosphorylation using 2-deoxyglucose. J. Cereb. Blood Flow Metabol. 6, 708ā€“716.

    CASĀ  Google ScholarĀ 

  44. Cremer, J. E., Seville, M. P., and Cunningham, V J. (1988) Tracer 2-deoxyglucose kinetics in brain regions of rats given kainic acid. J. Cereb. Blood Flow Metabol. 8, 244ā€“253.

    ArticleĀ  CASĀ  Google ScholarĀ 

  45. Bolz, S., Farrell, C. L., Dietz, K., and Wolburg, H. (1996) Subcellular distribution of glucose transporter (GLUT1) during development of the blood brain barrier in rats. Cell Tissue Res. 284, 355ā€“365.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  46. Gerhart, D. Z., LeVasseur, R. J., Broderius, M. A., and Drewes, L. R. (1989) Glucose transporter localization in brain using light and electron immunocytochemistry. J. Neurosci. Res. 22, 464ā€“472.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  47. Cornford, E. M., Hyman, S., Cornford, M. E., and Caron, M. J. (1996) Glut1 glucose transporter activity in human brain injury. J. Neurotrauma 13, 523ā€“536.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  48. Kumagai, A. K., Vinores, S. A., and Pardridge, W. M. (1996) Pathological upregulation of inner blood-retinal barrier Glut1 glucose transporter expression in diabetes mellitus. Brain Res. 706, 313ā€“317.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  49. Vorbrodt, A. W., Dobrogowska, D. H., Ueno, M., and Tarnawski, M. (1995) A quantitative immunocytochemical study of blood-brain barrier to endogenous albumin in cerebral cortex and hippocampus of senescence-accelerated mice (SAM). Folia Histochem. Cytobiol. 33, 229ā€“237.

    PubMedĀ  CASĀ  Google ScholarĀ 

  50. Vorbrodt, A. W., Dobrogowska, D. H., Tarnawski, M., and Lossinski, A. S. (1994) A quantitative immunocytochemical study of the osmotic opening of the blood-brain barrier to endogenous albumin. J. Neurocytol. 23, 772ā€“800.

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2003 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Cornford, E.M., Hyman, S., Cornford, M.E. (2003). Immunogold Detection of Microvascular Proteins in the Compromised Blood-Brain Barrier. In: Nag, S. (eds) The Blood-Brain Barrier. Methods in Molecular Medicineā„¢, vol 89. Humana Press. https://doi.org/10.1385/1-59259-419-0:161

Download citation

  • DOI: https://doi.org/10.1385/1-59259-419-0:161

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-073-1

  • Online ISBN: 978-1-59259-419-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics