Skip to main content

Characterization and Authentication of Cancer Cell Lines

An Overview

  • Protocol
Cancer Cell Culture

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 88))

Abstract

With over 3000 cancer cell lines described in the literature and thousands in regular use, it has become essential to characterize and authenticate cell-line models. Characterization of the properties of cell lines is important for a number of reasons. First, the relationship of the cell line to the cells of origin should be established to confirm that the cell line is derived from and is representative of its tissue of origin. If the cell line is to have any value as a model it should reflect the properties of the cell type from which it was derived. For example, for a cell line established from a breast carcinoma it is helpful to show that the cell line has characteristics consistent with breast and epithelial origin. Although the genetic profile should remain constant, expression may change and features such as differentiation characteristics may be lost over time in culture. Similarly, as the culture develops, certain clones may emerge with selection and predominate. Particularly important is the need to check for purity and potential cross-contamination with other cell lines. The history of cell culture indicates that cross-contamination between cell lines is widely prevalent and continues to be an ongoing problem (13). During the 1970s and 1980s, multiple studies initiated by Stanley Gartler and Walter Nelson-Rees demonstrated that one in three cell lines were either contaminated or even totally replaced by other cell lines (48). The most frequent contaminant was the HeLa cervical carcinoma cell line which had been established in 1951 (9) and had been widely distributed to many research laboratories. As a result of its rapid growth rate, once mixed with other cell lines it would generally outgrow them. Unfortunately this problem has not disappeared, and contamination continues to be widespread (1,2,10). This area is covered in more detail in Chapter 30.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O’Brien, S. J. (2000) Cell culture forensics. Proc. Natl. Acad. Sci. USA 98, 7656–7658.

    Article  Google Scholar 

  2. Stacey, G. N., Masters, J. R. W., Hay, R. J., Drexler, H. G., Macleod, R. A. F., and Freshney, R. I. (2000) Cell contamination leads to inaccurate data: we must take action now. Nature 403, 356.

    Article  PubMed  CAS  Google Scholar 

  3. Macleod, R. A. F., Dirks, W. G., and Drexler, H. G. (2002) Persistent use of misidentified cell lines and its prevention. Genes Chromosomes Cancer 33, 103–105.

    Article  PubMed  Google Scholar 

  4. Gartler, S. M. (1968) Apparent HeLa contamination of human heterodiploid cell lines. Nature 217, 750–751.

    Article  PubMed  CAS  Google Scholar 

  5. Nelson-Rees, W. A., Flandermeyer, R. R., and Hawthorne P. K. (1974) Banded marker chromosomes as indicators of intraspecies cellular contamination. Science 184, 1093–1096.

    Article  PubMed  CAS  Google Scholar 

  6. Nelson-Rees, W. A., and Flandermeyer, R. R. (1976) HeLa cultures defined. Science 191, 96–98.

    Article  PubMed  CAS  Google Scholar 

  7. Nelson-Rees, W. A., Daniels, D. W., and Flandermeyer, R. R. (1981) Cross-contamination of cells in culture. Science 212, 446–452.

    Article  PubMed  CAS  Google Scholar 

  8. Nelson-Rees, W. A. and Flandermeyer, R. R. (1977). Inter-and intraspecies contamination of human breast tumor cell lines HBC and BrCa5 and other cell cultures. Science 195, 1343–1344.

    Article  PubMed  CAS  Google Scholar 

  9. Gey, G. O., Coffman, W. D., and Kubicek, M. T. (1952) Tissue culture studies of the proliferative capacity of cervical carcinoma and normal epithelium. Cancer Res. 12, 264–265.

    Google Scholar 

  10. MacLeod, R. A. F., Dirks, W. G., Matsuo, Y., Kaufmann, M., Milch, H., and Drexler, H. G. (1999) Widespread intraspecies cross-contamination of human tumor cell lines arising at source. Int. J. Cancer 83, 555–563.

    Article  PubMed  CAS  Google Scholar 

  11. UKCCCR (2000) UKCCCR guidelines for the use of cell lines in cancer research. Brit. J. Cancer 82, 1495–15091.

    Article  Google Scholar 

  12. Furlong, M. T., Hough, C. D., Sherman-Baust, C. A., Pizer, E. S., and Morin, P. J. (1999) Evidence for the colonic origin of ovarian cancer cell line SW626. J. Natl. Cancer Inst. 91, 1327–1328.

    Article  PubMed  CAS  Google Scholar 

  13. Masters, J. R. (2002) HeLa cells 50 years on: the good, the bad and the ugly. Nat. Rev. Cancer 2, 315–319.

    Article  PubMed  CAS  Google Scholar 

  14. Gilbert, D. A., Reid, Y. A., Gail, M. H., Pee, D., White, C., Hay, R. J., et al. Application of DNA fingerprinting for cell-line individualization. Am. J. Hum. Genet. 47, 499–514.

    Google Scholar 

  15. Stacey, G., Bolton, B., Doyle, A., and Griffiths, B. (1992) DNA fingerprinting—a valuable new technique for the characterization of cell lines. Cytotechnol 9, 211–216.

    Article  CAS  Google Scholar 

  16. Stacey, G. N., Bolton, B. J., and Doyle, A. (1991) The quality control of cell banks using DNA fingerprinting. EXS 58, 361–370.

    PubMed  CAS  Google Scholar 

  17. Jeffreys, A. J., Wilson, V., and Thein, S. L. (1985) Hypervariable “minisatellite” regions in human DNA. Nature 314, 67–73.

    Article  PubMed  CAS  Google Scholar 

  18. Jeffreys, A. J., Wilson, V., and Thein, S. L. (1985) Individual-specific “fingerprints” of human DNA. Nature 314, 76–79.

    Article  Google Scholar 

  19. Masters, J. R., Thomson, J. A., Daly-Burns, B. et al., (2001) Short tandem repeat profiling provides an international reference standard for human cell lines. Proc. Natl. Acad. Sci. USA 98, 8012–8017.

    Article  PubMed  CAS  Google Scholar 

  20. Rowley, J. D. (1973) A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 243, 290–293.

    Article  PubMed  CAS  Google Scholar 

  21. Seabright, M. (1973) Improvement of trypsin method for banding chromosomes. Lancet 1, 1249–1250.

    Article  PubMed  CAS  Google Scholar 

  22. Caspersson, T., Zech, L., and Johansson, C. (1970) Differential binding of alkylating fluorochromes in human chromosomes. Exp. Cell Res. 60, 315–319.

    Article  PubMed  CAS  Google Scholar 

  23. Pardue, M. L. and Gall, J. G. (1970) Chromosome localization of mouse satellite DNA. Science 168, 1356–1358.

    Article  PubMed  CAS  Google Scholar 

  24. Dutrillaux, B., Finaz, C., de Grouchy, J. and Lejeune, J. (1972) Comparison of banding patterns of human chromosomes obtained with heating, fluorescence, and proteolytic digestion. Cytogenetics 11, 113–116.

    Article  PubMed  CAS  Google Scholar 

  25. Lichter, P. (1997) Multicolor FISHing: what’s the catch. Trends Genet 13, 475–479.

    Article  PubMed  CAS  Google Scholar 

  26. Speicher, M. R., Ballard, S. G., and Ward, D. C. (1996) Karyotyping human chromosomes by combinatorial multifluor FISH. Nature Genet. 12, 368–375.

    Article  PubMed  CAS  Google Scholar 

  27. Schrock, E., du Manoir, S., Veldman, T. et al. (1996) Multicolor spectral karyotyping of human chromosomes. Science 273, 494–497.

    Article  PubMed  CAS  Google Scholar 

  28. Henegariu, O., Heerema, N. A., Bray-Ward, P. et al. (1999) Colour-changing Karyotyping: an alternative to M-FISH/SKY. Nat. Genet. 23, 263–264.

    Article  PubMed  CAS  Google Scholar 

  29. Tanke, H. J., Wiegant, J., van Gijlswijk, R. P. M. et al. (1999) New strategy for multicolour fluorescence in situ hybridisation: COBRA: combined binary ratio labeling. Eur. J. Hum. Genet. 7, 2–11.

    Article  PubMed  CAS  Google Scholar 

  30. O’Brien, S. J., Kleiner, G., Olson, R., and Shannon, J. E. (1977) Enzyme polymorphisms as genetic signatures in human cell cultures. Science 195, 1345–1348.

    Article  Google Scholar 

  31. O’Brien, S. J., Shannon, J. E., and Gail, M. H. (1980) A molecular approach to the identification and individualization of human and animal cells in culture: isozyme and allozyme genetic signatures. In Vitro 16, 119–135.

    Article  Google Scholar 

  32. Nims, R. W., Shoemaker, A. P., Bauernschub, M. A., Rec, L. J., and Harbell, J. W. (1998) Sensitivity of isoenzyme analysis for the detection of interspecies cell line cross-32. contamination. In Vitro Cell. Dev. Biol. Anim. 34, 35–39.

    Article  PubMed  CAS  Google Scholar 

  33. Steube, K. G., Grunicke, D., and Drexler, H. G. (1995) Isoenzyme analysis as a rapid method for the examination of the species identity of cell cultures. In Vitro Cell. Dev. Biol. Anim. 31, 115–119.

    Article  PubMed  CAS  Google Scholar 

  34. Lin, M. A., Latt, S. A., and Davidson, R. L. (1974) Identification of human and mouse chromosomes in human-mouse hybrids by centromere fluorescence. Exp. Cell Res. 87, 429–433.

    Article  PubMed  CAS  Google Scholar 

  35. Friend, K. K., Dorman, B. P., Kucherlapati, R. S., and Ruddle, F. H. (1976) Detection of interspecies translocations in mouse-human hybrids by alkaline Giemsa staining. Exp. Cell Res. 99, 31–36.

    Article  PubMed  CAS  Google Scholar 

  36. Stulberg, C. S. (1973) Extrinsic cell contamination of tissue culture. In: Fogh J (ed). Contamination in Cell Cultures, Academic Press, New York, pp. 1–23.

    Google Scholar 

  37. Thacker, J. (1993) Fingerprinting of mammalian cell lines with a single PCR primer. Biotechniques 16, 252–253.

    Google Scholar 

  38. Nelson, D. L., Ledbetter, S. A., Corbo, L. et al. (1989) Alu polymerase chain reaction: A method for rapid isolation of human-specific sequences from complex DNA sources. Proc. Natl. Acad. Sci. USA 86, 6686–6690.

    Article  PubMed  CAS  Google Scholar 

  39. Puts J. J., Vooijs G. P., Huysmans A. et al. (1986) Cytoskeletal proteins as tissue-specific markers in cytopathology. Exp. Cell Biol. 54, 73–79.

    PubMed  CAS  Google Scholar 

  40. Quentmeier H., Osborn M., Reinhardt J., et al. (2001) Immunocytochemical analysis of cell lines derived from solid tumors. J. Histochem. Cytochem. 49, 1369–1378

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Langdon, S.P. (2004). Characterization and Authentication of Cancer Cell Lines. In: Langdon, S.P. (eds) Cancer Cell Culture. Methods in Molecular Medicine™, vol 88. Humana Press. https://doi.org/10.1385/1-59259-406-9:33

Download citation

  • DOI: https://doi.org/10.1385/1-59259-406-9:33

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-079-3

  • Online ISBN: 978-1-59259-406-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics