Skip to main content

Amplification of Representative cDNA Pools from Microscopic Amounts of Animal Tissue

  • Protocol
Generation of cDNA Libraries

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 221))

Abstract

The possibility of amplifying total complementary DNA (cDNA) obtained from small amounts of biological material is not yet routinely considered, despite the fact that obtaining amounts of material suitable for direct processing by standard methods is often time-consuming and expensive and may be even impossible. Perhaps the most significant obstacle to the full appreciation of the technique is the widespread belief that polymerase chain reaction (PCR) amplification severely distorts the original cDNA profile, so that some cDNA species dramatically rise in abundance while others diminish and may even become completely lost. However, we found that there are just a few simple rules that should be followed to ensure that the amplified sample is minimally distorted and fully representative (i.e., contains all types of message originally present in RNA, even the least abundant ones). This was demonstrated in our own experiments on differential display (1) and elsewhere in application of amplified cDNA as a probe for gene profiling by array technology (25). According to our experience in gene hunting in various biological models, amplified cDNA can substitute for normal, nonamplified cDNA in virtually all tasks. Moreover, in PCR-based gene hunting techniques such as rapid amplification of cDNA ends (RACE) (6,7; see also Chapter 5 of this volume), subtraction (8), or differential display (9), the amplified cDNA usually outperforms the normal one, because all backgrounds are predictable and can be easily kept under control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Matz, M., Usman, N., Shagin, D., Bogdanova, E., and Lukyanov, S. (1997) Ordered differential display: a simple method for systematic comparison of gene expression profiles. Nucleic Acids Res. 25, 2541–2542.

    Article  CAS  PubMed  Google Scholar 

  2. Gonzalez, P., Zigler, J. S., Jr, Epstein, D. L., and Borras, T. (1999) Identification and isolation of differentially expressed genes from very small tissue samples. Biotechniques 26, 884–886, 888–892.

    CAS  PubMed  Google Scholar 

  3. Spirin, K. S., Ljubimov, A. V., Castellon, R., Wiedoeft, O., Marano, M., Sheppard, D., et al. (1999) Analysis of gene expression in human bullous keratopathy corneas containing limiting amounts of RNA. Invest. Opthalmol. Vis. Sci. 40, 3108–3115.

    CAS  Google Scholar 

  4. Wang, E., Miller L. D., Ohnmacht, G. A., Liu, E. T., and Marincola, M. (2000) High-fidelity mRNA amplification for gene profiling. Nat. Biotechnol. 18, 457–459.

    Article  CAS  PubMed  Google Scholar 

  5. Livesey, F. J., Furukawa, T., Steffen, M. A., Church, G. M., and Cepko, C. L. (2000) Microarray analysis of the transcriptional network controlled by the photoreceptor homeobox gene Crx. Curr. Biol. 10, 301–310.

    Article  CAS  PubMed  Google Scholar 

  6. Chenchik, A., Diachenko, L., Moqadam, F., Tarabykin, V., Lukyanov, S., and Siebert, P. D. (1996) Full-length cDNA cloning and determination of mRNA 5′ and 3′ ends by amplification of adaptor-ligated cDNA. Biotechniques 21, 526–534.

    CAS  PubMed  Google Scholar 

  7. Matz, M., Shagin, D., Bogdanova, E., Britanova, O., Lukyanov, S., Diatchenko, L., et al. (1999) Amplification of cDNA ends based on template-switching effect and step-out PCR. Nucleic Acids Res. 27, 1558–1560.

    Article  CAS  PubMed  Google Scholar 

  8. Diatchenko, L., Lukyanov, S., Lau, Y. F., and Siebert, P. D. (1999) Suppression subtractive hybridization: a versatile method for identifying differentially expressed genes. Methods Enzymol. 303, 349–380.

    Article  CAS  PubMed  Google Scholar 

  9. Matz, M. V. and Lukyanov, S. A. (1998) Different strategies of differential display: areas of application. Nucleic Acids Res. 26, 5537–5543.

    Article  CAS  PubMed  Google Scholar 

  10. Chomczynski, P. and Sacchi, N. (1987) Single-step method of RNA isolation by acid guanidinium thiocyanat-pheno-chloroform extraction. Anal. Biochem. 162, 156–159.

    Article  CAS  PubMed  Google Scholar 

  11. Lee, Y. H., Huang, G. M., Cameron, R. A., Graham, G., Davidson, E. H., Hood, L., et al. (1999) EST analysis of gene expression in early cleavage-stage sea urchin embryos. Development 126, 3857–3867.

    CAS  PubMed  Google Scholar 

  12. Siebert, P. D., Chenchik, A., Kellogg, D. E., Lukyanov, K. A., and Lukyanov, S. A. (1995) An improved PCR method for walking in uncloned genomic DNA. Nucleic Acids Res. 23, 1087–1088.

    Article  CAS  PubMed  Google Scholar 

  13. Lukyanov, K. A., Diachenko, L., Chenchik, A., Nanisetti, A., Siebert, P. D., Usman, N. Y., et al. (1997) Construction of cDNA libraries from small amounts of total RNA using the suppression PCR effect. Biophys. Biochem. Res. Comm. 230, 285–288.

    Article  CAS  Google Scholar 

  14. Schmidt, W. M. and Mueller, M. W. (1999) CapSelect: a highly sensitive method for 5′ CAP-dependent enrichment of full length cDNA in PCR-mediated analyses of mRNAs. Nucleic Acid Res. 27, e31.

    Article  CAS  PubMed  Google Scholar 

  15. Chenchik, A., Zhu, Y. Y., Diatchenko, L., Li, R., Hill, J., and Siebert, P. D. (1998) Gene Cloning and Analysis by RT-PCR (Siebert, P. and Larrick, J., eds.), BioTechniques Books, Natick, MA, pp. 305–319.

    Google Scholar 

  16. Ishikawa, H. (1977) Evolution of ribosomal RNA. Comp. Biochem. Physiol. B 58, 1–7.

    Article  CAS  PubMed  Google Scholar 

  17. Lukyanov, K. A., Matz, M. V., Bogdanova, E. A., Gurskaya, N. G., and Lukyanov, S. A. (1996) Molecule by molecule PCR amplification of complex DNA mixtures for direct sequencing: an approach to in vitro cloning. Nucleic Acids Res. 24, 2194–2195.

    Article  CAS  PubMed  Google Scholar 

  18. Fradkov, A. F., Lukyanov, K. A., Matz, M. V., Diatchenko, L. B., Siebert, P. D., and Lukyanov, S. A. (1998) Sequence-independent method for in vitro generation of nested deletions for sequencing large DNA fragments. Anal. Biochem. 258, 138–141.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Matz, M.V. (2003). Amplification of Representative cDNA Pools from Microscopic Amounts of Animal Tissue. In: Ying, SY. (eds) Generation of cDNA Libraries. Methods in Molecular Biology™, vol 221. Humana Press. https://doi.org/10.1385/1-59259-359-3:103

Download citation

  • DOI: https://doi.org/10.1385/1-59259-359-3:103

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-066-3

  • Online ISBN: 978-1-59259-359-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics