Skip to main content

Designing Combinatorial Libraries for Efficient Screening

  • Protocol
Combinatorial Library

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 201))

  • 509 Accesses

Abstract

Half a century ago, the term “drug discovery” conjured images of adventures into the jungle, beneath the sea, and atop mountains in search of frogs, sponges, lichens, or any unstudied life form that, ground up, might exhibit inhibitory effects toward a major human disease. More romantic and exciting science cannot be, to those of us too young to have participated in the “old” drug discovery paradigm, and perhaps also not more laborious, unpredictable, and frightening when included in a business plan. Combinatorial chemistry and high-throughput screening evolved to fill the need for a more systematic approach to discovery, in which miniaturization and automation were applied, as in traditional manufacturing processes, to reduce costs and cycle times. But to the contrary, the cost associated with producing clinical candidates seems to have actually risen with the application of these technologies (13).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Prentis R. A., Lis, Y. and Walker S. R. (1988) Pharmaceutical innovation by the seven UK-owned pharmaceutical companies (1964−1985). Br. J. Clin. Pharmac. 25, 387–396.

    CAS  Google Scholar 

  2. DiMasi J. A. (1995) Success rates for new drugs entering clinical testing in the United States. Clinical Pharmacology and Therapeutics 58, 1–14.

    Article  PubMed  CAS  Google Scholar 

  3. Venkatesh S. and Lipper R. A. (2000) Role of the development scientist in compound lead selection and optimization. J. Pharm. Sci. 89, 145–154.

    Article  PubMed  CAS  Google Scholar 

  4. Martin Y. C. (1997) Challenges and prospects for computational aids to molecular diversity. Perspectives in Drug Discovery and Design 7/8, 159–172.

    CAS  Google Scholar 

  5. Kennedy T. (1997) Managing the drug discovery/development interface. Drug Discovery Today 2, 436–444.

    Article  Google Scholar 

  6. Lipinski C. A., Lombardo F., Dominy B. W., and Feeney P. J. (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 23, 3–25.

    Article  CAS  Google Scholar 

  7. Ekins S., Bravi G., Binkley S., et al. (2000) Three-and four-dimensionalquantitative structure activity relationship (3D/4D-QSAR) analyses of CYP2C9 inhibitors. Drug Metabolism and Disposition 28, 994–1002.

    PubMed  CAS  Google Scholar 

  8. Ekins S., Bravi G., Wikel J. H., and Wrigthon S. A. (1999) Three-dimensionalduantitative structure activity relationship analysis of cytochrome P450 3A4 substrates. J. Pharm. Exp. Therap. 291, 424–433.

    CAS  Google Scholar 

  9. Ekins S., Bravi G., Ring B. J., et al. (1999) Three-dimensional quantitative structure activity relationship analyses of substrates for CYP2B6. J. Pharm. Exp. Therap. 288, 21–29.

    CAS  Google Scholar 

  10. deGroot M. J., Ackland M. J., Horne V. A., Alex A. A., and Jones B. C. (1999) A novel approach to predicting P450 mediated drug metabolism. CYP2D6 catalyzed N-dealkylation reactions and qualitative metabolite predictions using a combined protein and pharmacophore model for CYP2D6. J. Med. Chem. 42, 4062–4070.

    Article  CAS  Google Scholar 

  11. Hardman J. G., Limbird L. E., Molinoff P. B., Ruddon R. W., and Gilman A. G. (eds.) (1996) Goodman & Gilman’s The Pharmacological Basis of Therapeutics, 9th ed. McGraw-Hill New York

    Google Scholar 

  12. Korzekwa K. R., Jones J. P., and Gillette J. R. (1990) Theoretical studies on cytochrome P450 mediated hydroxylation: a predictive model for hydrogen atom abstractions. J. Am. Chem. Soc. 112, 7042–7046.

    Article  CAS  Google Scholar 

  13. Korzekwa K. R. and Jones J. P. (1993) Predicting the cytochrome P450 mediated metabolism of xenobiotics. Pharmacogenetics 3, 1–18.

    Article  PubMed  CAS  Google Scholar 

  14. Korzekwa K. R., Grogan J., DeVito S., and Jones J. P. (1996) Electronic models for cytochrome P450 oxidations. Advances in Experimental Medicine & Biology 387, 361–396.

    CAS  Google Scholar 

  15. MDL Information Systems, I. (1999) Available Chemicals Directory, 99.2 ed., San Leandro, CA

    Google Scholar 

  16. Powers D. G., Casebier D. S., Fokas D., Ryan W. J., Troth J. R., and Coffen D. L. (1998) Automated parallel synthesis of chalcone-based screening libraries. Tetrahedron Lett. 54, 4085.

    CAS  Google Scholar 

  17. Gillet V. J., Willett P., and Bradshaw J. (1997) The effectiveness of reactant pools for generating structurally-diverse combinatorial libraries. J. Chem. Inf. Comput. Sci. 37, 731–740.

    Article  CAS  Google Scholar 

  18. Agrafiotis D. K. and Lobanov V. S. (2000) Ultrafast algorithm for designing focused combinatorial arrays. J. Chem. Inf. Comput. Sci. 40, 1030–1038.

    Article  PubMed  CAS  Google Scholar 

  19. Bravi G., Green D. V.S., Hann M. M., and Leach A. R. (2000) PLUMS: a program for the rapid optimization of focused libraries. J. Chem. Inf. Comput. Sci. 40, 1441–1448.

    Article  PubMed  CAS  Google Scholar 

  20. Breneman C. M. and Rhem M. (1997) QSPR analysis of HPLC column capacity factors for a set of high-energy materials using electronic van der Waals surface property descriptors computed by transferable atom equivalent method. J. Comp. Chem. 18, 182–197.

    Article  CAS  Google Scholar 

  21. Pearlman R. S. and Smith K. M. (1999) Metric validation and the receptorrelevant subspace concept. J. Chem. Inf. Comput. Sci. 39, 28–35.

    Article  CAS  Google Scholar 

  22. Warr W. A. (1997) Commercial software systems for diversity analysis. Perspectives in Drug Discovery and Design 7/8, 115–130.

    CAS  Google Scholar 

  23. Martin E. J., Blaney J. M., Siani M. A., Spellmeyer D. C., Wong A. K., and Moos W. H. (1995) Measuring diversity: experimental design of combinatorial libraries for drug discovery. J. Med. Chem. 38, 1431–1436.

    Article  PubMed  CAS  Google Scholar 

  24. Higgs R. E., Bemis K. G., Watson I. A., and Wikel J. H. (1997) Experimental designs for selecting molecules from large chemical databases. J. Chem. Inf. Comput. Sci. 37, 861–870.

    Article  CAS  Google Scholar 

  25. Martin E. J. and Critchlow R. E. (1999) Beyond mere diversity: tailoring combinatorial libraries for drug discovery. J. Comb. Chem. 1, 32–45.

    Article  PubMed  CAS  Google Scholar 

  26. Linusson A., Wold S., and Norden B. (1999) Statistical moelcular design of peptoid libraries. Molecular Diversity 4, 103–114.

    Article  CAS  Google Scholar 

  27. Linusson A., Gottfries J., Lindgren F., and Wold S. (2000) Statistical molecular design of building blocks for combinatorial chemistry. J. Med. Chem. 43, 1320–1328.

    Article  PubMed  CAS  Google Scholar 

  28. Mount J., Ruppert J., Welch W., and Jain A. N. (1999) IcePick: A flexible surface-based system for molecular diversity. J. Med. Chem. 42, 60–66.

    Article  PubMed  CAS  Google Scholar 

  29. Pickett S. D., Luttmann C., Guerin V., Laoui A., and James E. (1998) DIVSEL and COMPLIB—strategies for the design and comparison of combinatorial libraries using pharmacophoric descriptors. J. Chem. Inf. Comput. Sci. 38, 144–150.

    Article  PubMed  CAS  Google Scholar 

  30. Clark R. D. (1997) OptiSim: An extended dissimilarity selection method for finding diverse representative subsets. J. Chem. Inf. Comput. Sci. 37, 1181–1188.

    Article  CAS  Google Scholar 

  31. Gillet V. J., Willett P., Bradshaw J., and Green D. V.S. (1999) Selecting combinatorial libraries to optimize diversity and physical properties. J. Chem. Inf. Comput. Sci. 39, 169–177.

    Article  CAS  Google Scholar 

  32. Zheng W., Cho S. H., Waller C. L., and Tropsha A. (1999) Rational combinatorial library deisgn. 3. Simulated annealing guided evaluation (SAGE) of molecular diversity: A novel computational tool for universal library design and database mining. J. Chem. Inf. Comput. Sci. 39, 738–746.

    Article  PubMed  CAS  Google Scholar 

  33. Good A. C. and Lewis R. A. (1997) New methodology for profiling combinatorial libraries and screening sets: cleaning up the design process with HARPick. J. Med. Chem. 40, 3926–3936.

    Article  PubMed  CAS  Google Scholar 

  34. Sheridan R. P., SanFeliciano S. G., and Kearsley S. K. (2000) Designing targeted libraries with genetic algorithms. J. Molecular Graphics and Modelling 18, 320–334.

    Article  CAS  Google Scholar 

  35. Mason J. S. and Beno B. R. (2000) Library design using BCUT chemistry-space descriptors and multiple four-point pharmacophore fingerprints: simultaneous optimization and structure-based diversity. J. Molecular Graphics and Modelling 18, 438–451.

    Article  CAS  Google Scholar 

  36. Hassan M., Bielawski J. P., Hempel J. C., and Waldman M. (1996) Optimization and visualization of molecular diversity of combinatorial libraries. Molecular Diversity 2, 64–74.

    Article  PubMed  CAS  Google Scholar 

  37. Borda J. C. D. (1781) Memoire sur les elections au scrutin Histoire de l’Academie Royale des Sciences, Paris

    Google Scholar 

  38. Arrow K. J. (1963) Social choice and individual values, 2nd ed. Wiley New York.

    Google Scholar 

  39. Czerminski R. (2001) Evaluating different approaches to consensus scoring, in preparation.

    Google Scholar 

  40. Saari D. G. (1995) Basic geometry of voting. Springer-Verlag New York.

    Book  Google Scholar 

  41. Meylan W. M., Howard P. H., and Boethling R. S. (1996) Improved method for estimating water solubility from octanol/water partition coefficient. Environmental Toxicology and Chemistry 15, 100–106.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc.

About this protocol

Cite this protocol

Manchester, J.I., Hartsough, D.S. (2002). Designing Combinatorial Libraries for Efficient Screening. In: English, L.B. (eds) Combinatorial Library. Methods in Molecular Biology™, vol 201. Springer, Totowa, NJ. https://doi.org/10.1385/1-59259-285-6:307

Download citation

  • DOI: https://doi.org/10.1385/1-59259-285-6:307

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-0-89603-980-3

  • Online ISBN: 978-1-59259-285-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics