Skip to main content

Perforated Patch-Clamp Technique

  • Protocol
Patch-Clamp Analysis

Part of the book series: Neuromethods ((NM,volume 35))

Abstract

The great advantage of patch clamp in cellular physiology is that it allows sensitive and reliable analysis of the electrical activity of cell membranes at the molecular level. Whole cell is the most popular variant of the patch-clamp technique. It is easy to obtain and it allows the use of intra- and extra-cellular recording solutions particularly devised to isolate the ionic membrane conductance of interest, or to intracellularly apply modulators or drugs. Patch clamp is therefore a very powerful technique, but the study of intracellular signaling-and the assessment of its impact on cellular electricity-requires the experimenter to perform recordings from virtually intact cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe, Y., Furukawa, K., Itoyama, Y., and Akaike, N. (1994) Glycine response in acutely dissociated ventromedial hypothalamic neuron of the rat: new approach with gramicidin perforated patch-clamp technique. J. Neurophys-iol. 72, 1530–1537.

    CAS  Google Scholar 

  • Ahn, S. C., Lee, S. J., Goo, Y. S., Sim, J. H., So, I., and Kim, K. W. (2001) Protein kinase C suppresses spontaneous, transient, outwards K+currents through modulation of the Na/Ca exchanger in guinea-pig gastric myocytes. Pflugers Arch. 441(4), 417–424.

    Article  Google Scholar 

  • Akaike, N. and Harata, N. (1994) Nystatin perforated patch recording and its applications to analyses of intracellular mechanisms. Japn. J. Physiol. 44, 433–473.

    Article  CAS  Google Scholar 

  • Andersen, O. S., Durkin, J. T., and Koeppe, R. E. II. (1988) Transport through membranes: carriers, channels, and pumps (Pullman, A., et al., eds.), Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 115–132.

    Google Scholar 

  • Bekar, L. K., Jabs, R., and Walz, W. (1999) GABAA receptor agonists modulate K+currents in adult hippocampal glial cells in situ. Glia 26(2), 129–138.

    Article  Google Scholar 

  • Bekar, L. K. and Walz, W. (1999) Evidence for chloride ions as intracellular messenger substances in astrocytes. J. Neurophysiol. 82(1), 248–254.

    Google Scholar 

  • Cass, A., Finkelstein, A., and Krespi, V. (1970) The ion permeability induced in thin lipid membranes by the polyene antibiotics nystatin and amphoteri-cin B. J. Gen. Physiol. 56, 100–124.

    Article  PubMed  CAS  Google Scholar 

  • Cass, A. and Dalmark, M. (1973) Equilibrium dialysis of ions in nystatin-treated red cells. Nature 244, 47–49.

    Article  CAS  Google Scholar 

  • Dean, J. B., Huang, R.-Q., Erlichman, J. S., Southard, T. L., and Hellard, D. T. (1997) Cell-cell coupling occurs in dorsal medullary neurons after minimizing anatomical-coupling artifacts. Neuroscience 80(1), 21–40.

    Article  Google Scholar 

  • Duchatelle-Gourdon, I., Lagrutta, A. A., and Hartzell, H. C. (1991) Effects of Mg2+on basal and beta-adrenergic-stimulated delayed rectifier potassium current in frog atrial myocytes. J Physiol. 435, 333–347.

    PubMed  CAS  Google Scholar 

  • Fan, J. S. and Palade, P. (1998) Perforated patch recordings with β-escin. PlĂĽgers Arch. 436, 1021–1023.

    Article  CAS  Google Scholar 

  • Hille, B. (1992) Ionic Channels of Excitable Membranes, 2nd ed. Sinauer, Sunder land, MA.

    Google Scholar 

  • Horn, R. and Marty, A. (1988) Muscarinic activation of ionic currents measured by a new whole-cell recording method. J. Gen. Physiol. 92, 145–159.

    Article  PubMed  CAS  Google Scholar 

  • Horn, R. (1991) Diffusion of nystatin in plasma membrane is inhibited by a glass-membrane seal. Biophys. J. 60, 329–333.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, B. D. and Byerly, L. (1993) A cytoskeletal mechanism for Ca2+channel metabolic dependence and inactivation by intracellular Ca2+. Neuron 10(5)

    Google Scholar 

  • Johnson, B. D. and Byerly, L. (1994) Ca2+channel Ca(2+)-dependent inactivation in a mammalian central neuron involves the cytoskeleton. Pflugers Arch. 429(1), 14–21.

    Article  Google Scholar 

  • Kobayashi, S., Kitazawa, T., Somlyo, A. V., and Somlyo, A. P. (1989) Cytosolic heparin inhibits muscarinic and β-adrenergic Ca2+release in smooth muscle. J. Biol. Chem. 264, 17,997–18,004.

    PubMed  CAS  Google Scholar 

  • Konishi, M. and Watanabe, M. (1995) Molecular size-dependent leakage of intra cellular molecules from frog skeletal muscle fiber permeabilized with β-escin. PlĂĽgers Arch. 429, 598–600.

    Article  CAS  Google Scholar 

  • Korn, S. J. and Horn, R. (1989) Influence of sodium-calcium exchange on calcium currents rundown and the duration of calcium-dependent chloride currents in pituitary cells, studies with whole cell and perforated patch recording. J. Gen. Physiol. 94, 789–812.

    Article  PubMed  CAS  Google Scholar 

  • Kyrozis, A. and Reichling, D. B. (1995) Perforated-patch recording with gramicidin avoids artifactual changes in intracellular chloride concentration. J. Neurosci. Methods 57, 27–35.

    Article  PubMed  CAS  Google Scholar 

  • Lampen, J. O. (1966) Interference of polyenic antifungal antibiotics (especially nystatin and filipin) with specific membrane function, in Biochemical Studies of Antimicrobial Drugs (Newton, B. A. and Reynolds, P. E., eds.), The Society for General Microbiology, Cambridge, MA, p. 111.

    Google Scholar 

  • Levitan, E. S. and Kramer, R. H. (1990) Neuropeptide modulation of single calcium and potassium channels detected with a new patch clamp configuration. Nature 348, 545–547.

    Article  PubMed  CAS  Google Scholar 

  • Lindau, M. and Fernandez, J. M. (1986) IgE-mediated degranulation of mast cells does not require opening of ion channels. Nature 319(6049), 150–153.

    Article  PubMed  CAS  Google Scholar 

  • Lopantsev, V. and Schwartzkroin, P. A. (1999) GABAA-Dependent chloride influx modulates GABAB-mediated IPSPs in hippocampal pyramidal cells. J. Neurophysiol. 82(3), 1218–1223.

    Google Scholar 

  • Magistretti, J., Mantegazza, M., Guatteo, E., and Wanke, E. (1996) Action potentials recorded with patch-clamp amplifiers: are they genuine? Trends Neurosci. 19(12), 530–534.

    Article  Google Scholar 

  • Marty, A. and Finkelstein, A. (1975) Pores formed in lipid bilayer membranes by nystatin. J. Gen. Physiol. 65, 515–526.

    Article  PubMed  CAS  Google Scholar 

  • Mazzanti, M., Assandri, R., Ferroni, A., and DiFrancesco, D. (1996) Cytoskeletal control of rectification and expression of four substates in cardiac inward rectifier K+channels. FASEB J. 10(2), 357–361.

    Google Scholar 

  • McKhann, G. M. II, D’Ambrosio, R., and Janigro, D. (1997) Heterogeneity of astrocyte resting membrane potentials and intercellular coupling revealed by whole-cell and gramicidin-perforated patch recordings from cultured neocortical and hippocampal slice astrocytes. J.Neurosci. 17(18), 6850–6863.

    PubMed  CAS  Google Scholar 

  • Muraki, K., Imaizumi, Y., and Watanabe, M. (1992) Ca-dependent K channels in smooth muscle cells permeabilized by beta-escin recorded using the cell attached patch-clamp technique. Pflugers Arch. 420(5-6), 461–469.

    Article  Google Scholar 

  • Rae, J., Cooper, K., Gates, P., and Watsky, M. (1991) Low access resistance perforated patch recordings using anphotericin B. J. Neurosci. Methods 37, 15–26.

    Article  PubMed  CAS  Google Scholar 

  • Rhee, J.-S., Ebihara, S., and Akaike, N. (1994) Gramicidin perforated patch-clamp technique reveals glycine-gated outward chloride current in dissociated nucleus solitarii neurons of the rat. J. Neurophysiol. 72, 1103–1108.

    PubMed  CAS  Google Scholar 

  • Sawyer, D. B., Koeppe, R. E., and Andersen, O. S. (1989) Induction of conductance heterogeneity in gramicidin channels. Biochemistry 28, 6571–6583.

    Article  PubMed  CAS  Google Scholar 

  • Tajima, Y., Ono, K., and Akaike, N. (1996) Perforated patch-clamp recording in cardiac myocytes using cation-selective ionophore gramicidin. Am. J. Physiol. 271(2 Pt 1), C524–C532.

    PubMed  CAS  Google Scholar 

  • Vandeputte, J., Wachtel, J. L., and Stiller, E. T. (1956) Amphotericins A and B, antifungal antibiotics produced by streptomyces. II. The isolation and properties of the crystalline amphotericins, in Antibiotics Annual, 1955-1956. Medical Encyclopedia, Inc., New York, pp.587–591.

    Google Scholar 

  • Wanke, E., Ferroni, A., Malgaroli, A., Ambrosini, A., Pozzan, T., and Meldolesi, J. (1987) Activation of a muscarinic receptor selectively inhibits a rapidly inactivated Ca2+current in rat sympathetic neurons. Proc. Natl. Acad. Sci. USA 84(12), 4313–4317.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc.

About this protocol

Cite this protocol

D’Ambrosio, R. (2002). Perforated Patch-Clamp Technique. In: Walz, W., Boulton, A.A., Baker, G.B. (eds) Patch-Clamp Analysis. Neuromethods, vol 35. Humana Press. https://doi.org/10.1385/1-59259-276-7:195

Download citation

  • DOI: https://doi.org/10.1385/1-59259-276-7:195

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-013-7

  • Online ISBN: 978-1-59259-276-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics