Ribonuclease Protection

  • Joanne L. Thorvaldsen
  • Marisa S. Bartolomei
Part of the Methods in Molecular Biology™ book series (MIMB, volume 181)


The ribonuclease protection assay (RPA) is a sensitive technique for the analysis of total cellular RNA. It involves generating a specific antisense riboprobe, hybridizing the probe to total RNA, removing unprotected RNA by RNases, and finally isolating and analyzing the protected RNA on a denaturing gel. Although the RPA is somewhat more labor-intensive than Northern analysis, it has the advantage of being more sensitive (as little as 0.1 pg of target RNA can be detected with ideal hybridization conditions). RPAs are also more tolerant of partially degraded RNA (provided the area that is protected is intact). Although RPAs are not as sensitive as polymerase chain reaction (PCR)-based RNA analyses, the target RNA is analyzed directly; a reverse transcription step is not required. Finally, the RPA is quantitative as long as the probe is in excess. More important for the study of imprinted genes, the RPA can be designed to detect allele-specific expression of the target gene of interest.


Imprint Gene Hybridization Buffer Microfuge Tube Ribonuclease Protection Assay Deionized Formamide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Melton D. A., Krieg P. A., Rebagliati M. R., Maniatis T., Zinn T., and Green M. R. (1984) Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Res. 12, 7035–7056.PubMedCrossRefGoogle Scholar
  2. 2.
    Gilman M. (1993) Ribonuclease protection assay, in Current Protocols in Molecular Biology (Ausubel, F. M., et al., eds.), Wiley, New York, pp. 4.7.1–4.7.8.Google Scholar
  3. 3.
    Belin D. (1998) The use of RNA probes for the analysis of gene expression, in Methods in Molecular Biology, Vol. 86 (Rapley, R. & Manning, D. L., eds.), Humana, Totowa, NJ, pp. 87–102.Google Scholar
  4. 4.
    Myers R. M., Larin Z., and Maniatis T. (1985) Detection of single-base substitutions by ribonuclease cleaveage at mismatches in RNA:DNA duplexes. Science 230, 1242–1246.PubMedCrossRefGoogle Scholar
  5. 5.
    Bartolomei M. S., Zemel S., and Tilghman S. M. (1991) Parental imprinting of the mouse H19 gene. Nature 351, 153–155.PubMedCrossRefGoogle Scholar
  6. 6.
    Leighton P. A., Ingram R. S., Eggenschwiler J., Efstratiadis A., and Tilghman S. M. (1995) Disruption of imprinting caused by deletion of the H19 gene region in mice. Nature 375, 34–39.PubMedCrossRefGoogle Scholar
  7. 7.
    Tremblay K. D., Saam J. R., Ingram R. S., Tilghman S. M., and Bartolomei M. S. (1995) A paternal-specific methylation imprint marks the alleles of the mouse H19 gene. Nature Genet. 9, 407–413.PubMedCrossRefGoogle Scholar
  8. 8.
    Leighton P. A., Saam J. R., Ingram R. S., Stewart C. L., and Tilghman S. M. (1995) An enhancer deletion affects both H19 and Igf2 expression. Genes Dev. 2079–2089.Google Scholar
  9. 9.
    Webber A. L., Ingram R. S., Levorse, J. M., and Tilghman S. M. (1998) Location of enhancers is essential for the imprinting of H19 and Igf2 genes. Nature 391, 711–715.PubMedCrossRefGoogle Scholar
  10. 10.
    Jones B. K., Levorse J. M., and Tilghman S. M. (1998) Igf2 imprinting does not require its own DNA methylation or H19 RNA. Genes Dev. 12, 2200–2207.PubMedCrossRefGoogle Scholar
  11. 11.
    Thorvaldsen J. L., Duran K. L., and Bartolomei M. S. (1998) Deletion of the H19 differentially methylated domain results in loss of imprinted expression of H19 and Igf2. Genes Dev. 12, 3693–3702.PubMedCrossRefGoogle Scholar
  12. 12.
    Brunkow M. E. and Tilghman S. M. (1991) Ectopic expression of the H19 gene in mice causes prenatal lethality. Genes Dev. 5, 1092–1101PubMedCrossRefGoogle Scholar
  13. 13.
    Dudov, K. P. and Perry, R. P. (1984) The gene encoding the mouse ribosomal protein L32 contains a uniquely expressed intron containing gene and an unmutated processed gene. Cell 37, 457–468.PubMedCrossRefGoogle Scholar
  14. 14.
    Sambrook J., Fritsch E. F., and Maniatis T. (1989) Molecular Cloning, A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar
  15. 15.
    Schenbon E. T. and Mierendort R. C. (1985) A novel transcription property at SP6 and T7 RNA polymerases: dependence on template structure. Nucleic Acids Res. 13, 6223–6234.CrossRefGoogle Scholar
  16. 16.
    Krieg P. A.and Melton D.A. (1987) In vitro RNA synthesis with SP6 RNA polymerase. Methods Enzymol.. 155, 397–415.PubMedCrossRefGoogle Scholar
  17. 17.
    Auffray C. and Rougeon F.(1980) Purification of mouse immunoglobulin heavychain messenger RNAs from total myeloma tumor RNA. Eur. J. Biochem. 107, 303–314.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2002

Authors and Affiliations

  • Joanne L. Thorvaldsen
    • 1
  • Marisa S. Bartolomei
    • 1
  1. 1.Howard Hughes Medical Institute and Department of Cell and Developmental BiologyUniversity of Pennsylvania School of MedicinePhiladelphia

Personalised recommendations