Skip to main content

The Blood-CSF Barrier in Culture

Development of a Primary Culture and Transepithelial Transport Model from Choroidal Epithelial Cells

  • Protocol
Epithelial Cell Culture Protocols

Part of the book series: Methods In Molecular Medicineā„¢ ((MIMB,volume 188))

Abstract

The chemical stability of the central nervous system (CNS) is safeguarded by two major barrier systems that separate the systemic circulation from the cerebral compartment. Within the cerebral compartment, the interstitial fluid (ISF) flows between neurons and the cerebrospinal fluid (CSF) circulates among major brain structures and ventricles. The direct continuity of ISF and CSF allows for the free exchange of substances within the extracellular space of the cerebral compartment. Thus, the barrier that separates the systemic compartment from ISF is defined as the blood-brain barrier, while the one that discontinues the circulation between systemic and CSF compartments is named the blood-CSF barrier. The choroid plexus, located within brain ventricles, is the tissue where the blood-CSF barrier is formed (1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zheng, W. (2001) Toxicology of choroid plexus: special reference to metal-induced neurotoxicities. Microsc. Res. Tech., 52, 89ā€“103.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  2. Zheng, W. (1996) The choroid plexus and metal toxicities, p. 609ā€“626. In Toxicology of metals (Chang, L. W., Magos, L., and Suzuki, T., eds.), CRC Press, New York.

    Google ScholarĀ 

  3. Southwell, B. R., Duan, W., Alcorn, D., Brack, C., Richardson, S., Kohrle, J., and Schreiber, G. (1993) Thyroxine transport to the brain: role of protein synthesis by the choroid plexus. Endocrinology 133, 2116ā€“2126.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  4. Zheng, W., Zhao, Q., and Graziano, J. H. (1998) Primary culture of rat choroidal epithelial cells: a model for in vitro study of the blood-cerebrospinal fluid barrier. In Vitro Cell. Biol. Dev. 34, 40ā€“45.

    ArticleĀ  CASĀ  Google ScholarĀ 

  5. Zheng, W., Blaner, W. S., and Zhao, Q. (1999) Inhibition by Pb of production and secretion of transthyretin in the choroid plexus: its relationship to thyroxine transport at the blood-CSF barrier. Toxicol. Appl. Pharmacol. 155, 24ā€“31.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  6. Mayer, S. E. and Sanders-Bush, E. (1993) Sodium-dependent antiporters in choroid plexus epithelial cultures from rabbit. J. Neurochem. 60, 1304ā€“1316.

    ArticleĀ  Google ScholarĀ 

  7. Dickson, P. W., Howlett, G. J., and Schreiber, G. (1985) Rat transthyretin (prealbumin): molecular cloning, nucleotide sequence, and gene expression in liver and brain. J. Biol. Chem. 260, 8214ā€“8219.

    PubMedĀ  CASĀ  Google ScholarĀ 

  8. Schreiber, G., Aldred, A. R., Jaworowski, A., Nilsson, C., Achen, M. G., and Segal, M. B. (1990) Thyroxine transport from blood to brain via transthyretin synthesis in choroid plexus. Am. J. Physiol. 258, R338ā€“R345.

    PubMedĀ  CASĀ  Google ScholarĀ 

  9. Sambrook, J., Fritsch, E. F., and Maniatis, T. (eds.) (1989) Molecular cloning, p. 7.6ā€“7.11. CSH Laboratory Press, Cold Spring Harbor, NY.

    Google ScholarĀ 

  10. Crook, R. B., Kasagami, H., and Prusiner, S. B. (1981) Culture and characterization of epithelial cells from bovine choroid plexus. J. Neurochem. 37, 845ā€“854.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  11. Kao, W. and Prokop, D. (1977) Proline analogue removes fibroblasts from cultured mixed cell population. Science 266, 63ā€“64.

    CASĀ  Google ScholarĀ 

  12. Saito, Y. and Wright, E. M. (1983) Bicarbonate transport across the frog choroid plexus and its control by cyclic nucleotides. J. Physiol. 336, 635ā€“648.

    PubMedĀ  CASĀ  Google ScholarĀ 

  13. Zheng, W., Perry, D. F., Nelson, D. L., and Aposhian, H. V. (1991) Protection of cerebrospinal fluid against toxic metals by the choroid plexus. FASEB J. 5, 2188ā€“2193.

    PubMedĀ  CASĀ  Google ScholarĀ 

  14. Zheng, W., Shen, H., Blaner, S. B., Zhao, Q., Ren, X., and Graziano, J. H. (1996) Chronic lead exposure alters transthyretin concentration in rat cerebrospinal fluid: the role of the choroid plexus. Toxicol. Appl. Pharmacol. 139, 445ā€“450.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  15. Aldred, A. R., Brack, C. M., and Schreiber, G. (1995) The cerebral expression of plasma protein genes in different species. Comp. Biochem. Physiol. 111B, 1ā€“15.

    CASĀ  Google ScholarĀ 

  16. Herbert, J., Wilcox, J. N., Pham, K. C., et al. (1986) Transthyretin: a choroid plexus-specific transport protein in human brain. Neurology 36, 900ā€“911.

    PubMedĀ  CASĀ  Google ScholarĀ 

  17. Bouille, C., Mesnil, M., Barriere, H., and Gabrion, J. (1991) Gap junctional intercellular communication between cultured ependymal cells, revealed by Lucifer yellow CH transfer and freeze-fracture. Glia 4, 25ā€“36.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  18. Peraldi-Roux, S., Nguyen-Than Dao, B., Hirn, M., and Gabrion, J. (1990) Choroi-dal ependymocytes in culture: expression of markers of polarity and function. Int. J. Dev. Neurosci. 8, 575ā€“588.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  19. Strazielle, N., and Ghersi-Egea, J. F. (1999) Demonstration of a coupled metabolism-efflux process at the choroid plexus as a mechanism of brain protection toward xenobiotics. J. Neurosci. 19, 6275ā€“6289.

    PubMedĀ  CASĀ  Google ScholarĀ 

  20. Tsutsumi, M., Skinner, M. K., and Sanders-Bush, E. (1989) Transferrin gene expression and synthesis by cultured choroid plexus epithelial cells. J. Biol. Chem. 264, 9626ā€“9631.

    PubMedĀ  CASĀ  Google ScholarĀ 

  21. Harter, D. H., Hsu, K. C., and Rose, H. M. (1967) Immunofluorescence and cyto-chemical studies of visna virus in cell culture. J. Virol. 1, 1265ā€“1270.

    PubMedĀ  CASĀ  Google ScholarĀ 

  22. Whittico, M. T., Hui, A. C., and Giacomini, K. M. (1991) Preparation of brush border membrane vesicles from bovine choroid plexus. J. Pharmacol. Methods 25, 215ā€“227.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2002 Humana Press Inc.

About this protocol

Cite this protocol

Zheng, W., Zhao, Q. (2002). The Blood-CSF Barrier in Culture. In: Wise, C. (eds) Epithelial Cell Culture Protocols. Methods In Molecular Medicineā„¢, vol 188. Humana Press. https://doi.org/10.1385/1-59259-185-X:99

Download citation

  • DOI: https://doi.org/10.1385/1-59259-185-X:99

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-893-6

  • Online ISBN: 978-1-59259-185-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics