Skip to main content

Expression of Recombinant Matrix Metalloproteinases in Escherichia coli

  • Protocol
Matrix Metalloproteinase Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 151))

  • 855 Accesses

Abstract

With the advent of recombinant DNA technology, numerous systems have been utilized for the overexpression of proteins. Recombinant protein expression in Escherichia coli (E. coli) typically provides large quantities of the protein of interest in a relatively short period of time. The expression can result in the accumulation of the recombinant protein to levels approaching 30–50% of the total E. coli protein. Expression of matrix metalloproteinases (MMPs) in E. coli has proven to be very useful in generating proteins for structural and functional studies, including X-ray crystallography. Numerous MMPs, including altered forms, have been successfully expressed in and purified from E. coli. These include forms of stromelysin-1, stromelysin-2, stromelysin-3, matrilysin, elastase, collagenase-1, collagenase-3, neutrophil collagenase, and membrane type-1 MMP (120). The expression of a truncated form of human stromelysin-1 (SL-1) will be used to illustrate the methods utilized for the expression of a matrix metalloproteinase in E. coli and for its extraction, refolding, and purification

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rosenfeld S. A., Ross O. H., Corman J. I., Pratta M. A., Blessington D. L., Fesser W. S., and Freimark B. D. (1994) Production of human matrix metalloproteinase 3 (stromelysin) in Escherichia coli. Gene 139, 281–286.

    Article  PubMed  CAS  Google Scholar 

  2. Salowe S. P., Marcy A. I., Cuca G. C., Smith C. K., Kopka I. E., Hagmann W. K., and Hermes J. D. (1992) Characterization of zinc-binding sites in human stromelysin-1: stoichiometry of the catalytic domain and identification of a cysteine ligand in the proenzyme. Biochemistry 31, 4535–4540.

    Article  PubMed  CAS  Google Scholar 

  3. Ye Q.-Z., Johnson L. L., Hupe D. J., and Baragi V. (1992) Purification and characterization of the human stromelysin catalytic domain expressed in Escherichia coli. Biochemistry 31, 11,231–11,235.

    Article  PubMed  CAS  Google Scholar 

  4. GronskiJr. T. J., Martin R. L., Kobayashi D. K., Walsh B. C., Holman M. C., Huber M., Van Wart H. E., and Shapiro S. D. (1997) Hydrolysis of a broad spectrum of extracellular matrix proteins by human macrophage elastase. J. Biol. Chem. 272, 121,89–12,194.

    Article  PubMed  CAS  Google Scholar 

  5. Ho T. F., Qoronfleh M. W., Wahl R. C., Pulvino T. A., Vavra K. J., Falvo J., Banks T. M., Brake P. G., and Ciccarelli R. B. (1994) Gene expression, purification and characterization of recombinant human neutrophil collagenase. Gene 146, 297–301.

    Article  PubMed  CAS  Google Scholar 

  6. Lemaitre V., Jungbluth A., and Eeckhout Y. (1997) The recombinant catalytic domain of mouse collagenase-3 depolymerizes type I collagen by cleaving its aminotelopeptides. Biochem. Biophys. Res. Commun. 230, 202–205.

    Article  PubMed  CAS  Google Scholar 

  7. Zhang Y. and Gray R. D. (1996) Characterization of folded, intermediate, and unfolded states of recombinant human interstitial collagenase. J. Bio. Chem. 271, 8015–8021.

    Article  CAS  Google Scholar 

  8. Windsor L. J., Birkedal-Hansen H., Birkedal-Hansen B., and Engler J. A. (1991) An internal cysteine plays a role in the maintenance of the latency of human fibroblast collagenase. Biochemistry 30, 641–647.

    Article  PubMed  CAS  Google Scholar 

  9. Windsor L. J., Steele D. L., LeBlanc S. B., and Taylor K. B. (1997) Catalytic domain comparisons of human fibroblast-type collagenase, stromelysin-1, and matrilysin. Biochim. Biophys. Acta. 1334, 261–272.

    PubMed  CAS  Google Scholar 

  10. Ye Q.-Z., Johnson L. L., and Baragi V. (1992) Gene synthesis and expression in E. coli for pump, a human matrix metalloproteinase. Biochem. Biophys. Res. Commun. 186, 143–149.

    Article  PubMed  CAS  Google Scholar 

  11. Marcy A. I., Eiberger L. L., Harrison R., Chan H. K., Hutchinson N. I., Hagmann W. K., Cameron P. M., Boulton D. A., and Hermes J. D. (1991) Human fibroblast stromelysin catalytic domain: expression, purification, and characterization of a C-terminally truncated form. Biochem. 30, 6476–6483.

    Article  CAS  Google Scholar 

  12. Pendas A. M., Knauper V., Puente X. S., Llano E., Mattei M.-G., Apte S., Murphy G., and López-Otin C. (1997) Identification and characterization of a novel human matrix metalloproteinase with unique structural characteristics, chromosomal location, and tissue distribution. J. Biol. Chem. 272, 4281–4286.

    Article  PubMed  CAS  Google Scholar 

  13. Kinoshita T., Sato H., Takino T., Itoh M., Akizawa T., and Seiki M. (1996) Processing of a precursor of 72-kilodalton type IV collagenase/gelatinase A by a recombinant membrane-type I matrix metalloproteinase. Cancer Res. 56, 2535–2538.

    PubMed  CAS  Google Scholar 

  14. Freimark B. D., Feeser W. S., and Rosenfeld S. A. (1994) Multiple sites of the propeptide region of human stromelysin-1 are required for maintaining a latent form of the enzyme. J. Biol. Chem. 269, 26,982–26,987.

    PubMed  CAS  Google Scholar 

  15. Murphy G., Segain J.-P., O’Shea M., Cockett M., Ioannou C., Lefebre O., Chambon P., and Basset P. (1993) The 28-kDa N-terminal domain of mouse stromelysin-3 has the general properties of a weak metalloproteinase. J. Biol. Chem. 268, 15,435–15,441.

    PubMed  CAS  Google Scholar 

  16. Shapiro S. D., Griffin G. L., Gilbert D. J., Jenkins N. A., Copeland N. G., Welgus H. G., Senior R. M., and Ley T. (1992) Molecular cloning, chromosomal localization, and bacterial expression of a murine macrophage metalloelastase. J. Biol. Chem. 267, 4664–4671.

    PubMed  CAS  Google Scholar 

  17. Lichte A., Kolkenbrock H., and Tschesche H. (1996) The recombinant catalytic domain of membrane-type matrix metalloproteinase-1 (MTI-MMP) induces activation of progelatinase A and progelatinase A complexed with TIMP-2. FEBS Lett. 397, 277–282.

    Article  PubMed  CAS  Google Scholar 

  18. Sato H., Kinoshita T., Takino T., Nakayama K., and Seiki M. (1996) Activation of a recombinant membrane type 1-matrix metalloproteinase (MT1-MMP) by furin and its interaction with tissue inhibitor of metalloproteinases (TIMP-2). FEBS Lett. 393, 101–104.

    Article  PubMed  CAS  Google Scholar 

  19. Itoh M., Masuda K., Ito Y., Akizawa T., Yoshioka M., Imai K., Okada Y., Sato H., and Seiki M. (1996) Purification and refolding of recombinant human proMMP-7 (pro-matrilysin) expressed in Escherichia coli and its characterization. J. Biochem. 119, 667–673.

    PubMed  CAS  Google Scholar 

  20. Welch A. R., Holman C. M., Browner M. F., Gehring M. R., Kan C.-C. and Van Wart H. E. (1995) Purification of human matrilysin produced in Escherichia coli and characterization using a new optimized fluorogenic peptide substrate. Archives of Biochemistry and Biophysics 324, 59–64.

    Article  PubMed  CAS  Google Scholar 

  21. Studier F. W. and Moffatt B. A. (1986) Use of Bacteriophage T7 RNA Polymerase to Direct Selective High-level Expression of Cloned Genes. J. Mol. Biol. 189, 113–130.

    Article  PubMed  CAS  Google Scholar 

  22. Wilhelm S. M., Collier I. E., Kronberger A., Eisen A. Z., Marmer B. L., Grant G. A., Bauer E. A., and Goldberg G. I. (1987) Human skin fibroblast stromelysin: Structure, glycosylation, substrate specificity, and differential expression in normal and tumorigenic cells. Proc. Natl. Acad. Sci. USA 84, 6725–6729.

    Article  PubMed  CAS  Google Scholar 

  23. Sambrook J., Fritsch E. F., and Maniatis T. (1989) Molecular Cloning, A Laboratory Manual, Second ed. Cold Spring Harbor New York Cold Spring Harbor Laboratory Press.

    Google Scholar 

  24. Sanger F., Nicklen S., and Coulson A. R. (1977) DNA sequencing with chainterminating inhibitors. Proc. Natl. Acad. Sci. USA 74, 5463–5467.

    Article  PubMed  CAS  Google Scholar 

  25. Biggin M.D., Gibson T. J., and Hong G. F. (1983) Buffer gradient gels and 35S label as an aid to rapid DNA sequence determination. Proc. Natl. Acad. Sci. USA 80, 3963–3965.

    Article  PubMed  CAS  Google Scholar 

  26. Zoller M. J. and Smith M. (1983) Oligonucleotide-directed mutagenesis of DNA fragments cloned into M13 vectors. Methods Enzymol. 100, 468–500.

    Article  PubMed  CAS  Google Scholar 

  27. Windsor L. J., Grenett H., Birkedal-Hansen B., Bodden M. K., Engler J. A., and Birkedal-Hansen H. (1993) Cell-type-specific regulation of SL-1 and SL-2 genes. Induction of SL-2, but not SL-1, in human keratinocytes in response to cytokines and phorbolesters. J. Biol. Chem. 266, 13,064–13,069.

    Google Scholar 

  28. Knight C. G., Willenbrock F., and Murphy G. (1992) A novel coumarin-labelled peptide for sensitive continuous assays of the matrix metalloproteinases. FEBS Lett. 296, 263–266.

    Article  PubMed  CAS  Google Scholar 

  29. Lovejoy B., Cleasby A., Hassell A. M., Longley K., Luther M. A., Weigl D., McGeehan G., McElroy A. B., Drewry D., Lambert M. H., and Jordan S. R. (1994) Structure of the catalytic domain of fibroblast collagenase complexed with an inhibitor. Science 263, 375–377.

    Article  PubMed  CAS  Google Scholar 

  30. Windsor L. J., Bodden M. K., Birkedal-Hansen B., Engler J. A., and BirkedalHansen H. (1994) Mutational analysis of residues in and around the active site of human fibroblast-type collagenase. J. Biol. Chem. 269, 26,201–26,207.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc.

About this protocol

Cite this protocol

Windsor, L.J., Steele, D.L. (2001). Expression of Recombinant Matrix Metalloproteinases in Escherichia coli . In: Clark, I.M. (eds) Matrix Metalloproteinase Protocols. Methods in Molecular Biology™, vol 151. Humana Press. https://doi.org/10.1385/1-59259-046-2:191

Download citation

  • DOI: https://doi.org/10.1385/1-59259-046-2:191

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-733-5

  • Online ISBN: 978-1-59259-046-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics