Skip to main content

Autoradiography of Enzymes, Second Messenger Systems, and Ion Channels

  • Protocol
Receptor Binding Techniques

Part of the book series: Methods in Molecular Biology ((MIMB,volume 106))

  • 632 Accesses

Abstract

Autoradiographic detection of ligand binding to tissue sections has been used to localize, quantify, and characterize a diverse range of sites. Enzymes have been studied using selective inhibitors, ion channels using naturally occurring toxins, and second messenger systems using inositol polyphosphates. Ligand binding complements immunohistochemistry and in situ hybridization by permitting pharmacological characterization and quantification of active sites. Localization, affinity, and specificity of binding sites for ligands can be correlated with functional studies performed with the same pharmacological agent. Bioactive ligands are often identified before their targets have been fully characterized, and radiolabeled ligands may become available before molecular and immunological reagents have been developed. A pharmacologically active agent may be synthesized before the endogenous ligand for its binding site has been identified, and autoradiographic methods may help elucidate the site of action of such agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kenny, A. J., Stephenson, S. L., and Turner, A. J. (1987) Cell surface peptidases, in Mammalian Ectoenzymes. (Kenny, A. J. and Turner, A. J., eds.), Elsevier, Amsterdam, pp. 169–210.

    Google Scholar 

  2. Wei, L., Clauser, E., Alhenc-Gelas, F., and Corvol, P. (1992) The two homologous domains of human angiotensin I-converting enzyme interact differently with competitive inhibitors. J. Biol. Chem. 267, 13,398–13,405.

    PubMed  CAS  Google Scholar 

  3. Strittmatter, S. M. and Snyder, S. H. (1984) Angiotensin-converting enzyme in the male rat reproductive system: autoradiographic visualization with [3H]captopril. Endocrinology 115, 2332–2341.

    Article  PubMed  CAS  Google Scholar 

  4. Mendelsohn, F. A. O. (1984) Localization of angiotensin converting enzyme in rat forebrain and other tissues by in vitro autoradiography using 125I-labelled MK351A. Clin. Exp. Pharmacol. Physiol. 11, 431–436.

    Article  PubMed  CAS  Google Scholar 

  5. Correa, F. M. A., Guilhaume, S. S., and Saavedra, J. M. (1991) Comparative quantification of rat brain and pituitary angiotensin-converting enzyme with autoradiographic and enzymatic methods. Brain Res. 545, 215–222.

    Article  PubMed  CAS  Google Scholar 

  6. Sun, Y., Diaz-Arias, A. A., and Weber, K. T. (1994) Angiotensin-converting enzyme, bradykinin, and angiotensin II receptor binding in rat skin, tendon, and heart valves: an in vitro, quantitative autoradiographic study. J. Lab. Clin. Med. 123, 372–377.

    PubMed  CAS  Google Scholar 

  7. Sun, Y., Cleutjens, J. P., Diaz-Arias, A. A., and Weber, K. T. (1994) Cardiac angiotensin converting enzyme and myocardial fibrosis in the rat. Cardiovasc. Res. 28, 1423–1432.

    Article  PubMed  CAS  Google Scholar 

  8. Zambetis-Bellesis, M., Dusting, G. J., Mendelsohn, F. A., and Richardson, K. (1991) Autoradiographic localization of angiotensin-converting enzyme and angiotensin II binding sites in early atheroma-like lesions in rabbit arteries. Clin. Exp. Pharmacol. Physiol. 18, 337–340.

    Article  PubMed  CAS  Google Scholar 

  9. Sun, Y. and Weber, K. T. (1996) Angiotensin-converting enzyme and wound healing in diverse tissues of the rat. J. Lab. Clin. Med. 127, 94–101.

    Article  PubMed  CAS  Google Scholar 

  10. Walsh, D. A., Hu, D. E., Wharton, J., Catravas, J. D., Blake, D. R., and Fan T. P. F. (1997) Sequential development of angiotensin receptors and angiotensin I converting enzyme during angiogenesis in the rat subcutaneous sponge granuloma. Br. J. Pharmacol. 120, 1302–1311.

    Article  PubMed  CAS  Google Scholar 

  11. Moncada, S., Palmer, R. M., and Higgs, E. A. (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 43, 109–142.

    PubMed  CAS  Google Scholar 

  12. Michel, A. D., Phul, R. K., Stewart, T. L., and Humphrey P. P. (1993) Characterization of the binding of [3H]-L-NG-nitro-arginine in rat brain. Br. J. Pharmacol. 109, 287, 288.

    PubMed  CAS  Google Scholar 

  13. Kidd, E. J., Michel, A. D., and Humphrey, P. P. (1995) Autoradiographic distribution of [3H]L-NG-nitro-arginine binding in rat brain. Neuropharmacology 34, 63–73.

    Article  PubMed  CAS  Google Scholar 

  14. Rutherford, R. A., McCarthy, A., Sullivan, M. H., Elder, M. G., Polak, J. M., and Wharton, J. (1995) Nitric oxide synthase in human placenta and umbilical cord from normal, intrauterine growth-retarded and pre-eclamptic pregnancies. Br. J. Pharmacol. 116, 3099–3109.

    PubMed  CAS  Google Scholar 

  15. Hara, H., Waeber, C., Huang, P. L., Fujii, M., Fishman, M. C., and Moskowitz, M. A. (1996) Brain distribution of nitric oxide synthase in neuronal or endothelial nitric oxide synthase mutant mice using [3H]L-NG-nitro-arginine autoradiography. Neuroscience 75, 881–890.

    Article  PubMed  CAS  Google Scholar 

  16. Burazin, T. C. and Gundlach, A. L. (1995) Localization of NO synthase in rat brain by [3H]L-NG-nitro-arginine autoradiography. Neuroreport 6, 1842–1844.

    Article  PubMed  CAS  Google Scholar 

  17. Jeremy, J. Y., Dashwood, M. R., Timm, M., Izzat, M. B., Mehta, D., Bryan, A. J., and Angelini, G. D. (1997) Nitric oxide synthase and adenylyl and guanylyl cyclase activity in porcine interposition vein grafts. Ann. Thoracic Surg. 63, 470–476.

    Article  CAS  Google Scholar 

  18. Szallasi, A. and Blumberg, P. M. (1990) Specific binding of resiniferatoxin, an ultrapotent capsaicin analog, by dorsal root ganglion membranes. Brain Res. 524, 106–111.

    Article  PubMed  CAS  Google Scholar 

  19. Holzer, P. (1991) Capsaicin: cellular targets, mechanisms of action, and selectivity for thin sensory neurons. Pharmacol. Rev. 43, 143–201.

    PubMed  CAS  Google Scholar 

  20. Winter, J., Walpole, C. S., Bevan, S., and James, I. F. (1993) Characterization of resiniferatoxin binding sites on sensory neurons: coregulation of resiniferatoxin binding and capsaicin sensitivity in adult rat dorsal root ganglia. Neuroscience 57, 747–757.

    Article  PubMed  CAS  Google Scholar 

  21. Szallasi, A., Blumberg, P. M., Nilsson, S., Hokfelt, T., Lundberg, J. M. (1994) Visualization by [3H]resiniferatoxin autoradiography of capsaicin-sensitive neurons in the rat, pig and man. Eur. J. Pharmacol. 264, 217–221.

    Article  PubMed  CAS  Google Scholar 

  22. Szallasi, A., Nilsson, S., Farkas-Szallasi, T., Blumberg, P. M., Hokfelt, T., and Lundberg, J. M. (1995) Vanilloid (capsaicin) receptors in the rat: distribution in the brain, regional differences in the spinal cord, axonal transport to the periphery, and depletion by systemic vanilloid treatment. Brain Res. 703, 175–183.

    Article  PubMed  CAS  Google Scholar 

  23. Gehlert, D. R. and Wamsley, J. K. (1986) In vitro autoradiographic localization of guanine nucleotide binding sites in sections of rat brain labeled with [3H]guanylyl-5′-imidodiphosphate. Eur. J. Pharmacol. 129, 169–174.

    Article  PubMed  CAS  Google Scholar 

  24. Aoki, H., Onodera, H., Yamasaki, Y., Yae, T., Jian, Z., and Kogure, K. (1992) The role of GTP binding proteins in ischemic brain damage: autoradiographic and histopathological study. Brain Res. 570, 144–148.

    Article  PubMed  CAS  Google Scholar 

  25. Sim, L. J., Selley, D. E., and Childers, S. R. (1995) In vitro autoradiography of receptor-activated G proteins in rat brain by agonist-stimulated guanylyl 5′-[gamma-[35S]thio]-triphosphate binding. Proc. Natl. Acad. Sci. U.S.A. 92, 7242–7246.

    Article  PubMed  CAS  Google Scholar 

  26. Fields, T. A. and Casey, P. J. (1997) Signalling functions and biochemical properties of pertussis toxin-resistant G-proteins. Biochem. J. 321, 561–571.

    PubMed  CAS  Google Scholar 

  27. Denhardt, D. T. (1996) Signal-transducing protein phosphorylation cascades mediated by Ras/Rho proteins in the mammalian cell: the potential for multiplex signalling. Biochem. J. 318, 729–747.

    PubMed  CAS  Google Scholar 

  28. Brandt, D. R. and Ross, E. M. (1985) GTPase activity of the stimulatory GTP-binding regulatory protein of adenylate cyclase, Gs. Accumulation and turnover of enzyme-nucleotide intermediates. J. Biol. Chem. 260, 266–272.

    PubMed  CAS  Google Scholar 

  29. Bottari, S. P., Taylor, V., King, I. N., Bogdal, Y., Whitebread, S., and de Gasparo, M. (1991) Angiotensin II AT2 receptors do not interact with guanine nucleotide binding proteins. Eur. J. Pharmacol. 207, 157–163.

    Article  PubMed  CAS  Google Scholar 

  30. Georgoussi, Z., Carr, C., and Milligan, G. (1993) Direct measurements of in situ interactions of rat brain opioid receptors with the guanine nucleotide-binding protein Go. Mol. Pharmacol. 44, 62–69.

    PubMed  CAS  Google Scholar 

  31. Walsh, D. A., Suzuki, T., Knock, G. A., Blake, D. R., Polak, J. M., and Wharton, J. (1994) AT11 receptor characteristics of angiotensin analog binding in human synovium. Br. J. Pharmacol. 112, 435–442.

    PubMed  CAS  Google Scholar 

  32. Joseph, S. K. (1996) The inositol triphosphate receptor family. Cell. Signal. 8, 1–7.

    Article  PubMed  CAS  Google Scholar 

  33. Worley, P. F., Baraban, J. M., Colvin, J. S., and Snyder, S. H. (1987) Inositol trisphosphate receptor localization in brain: variable stoichiometry with protein kinase C. Nature 325, 159–161.

    Article  PubMed  CAS  Google Scholar 

  34. Walsh, D. A., Mapp, P. I., Polak, J. M., and Blake, D. R. (1995) Autoradiographic localisation and characterisation of [3H]α-trinositol (1S-myo-inositol-1,2,6-trisphosphate) binding sites in human and mammalian tissues. J. Pharmacol. Exp. Therapeut. 273, 461–469.

    CAS  Google Scholar 

  35. Nagata, E., Tanaka, K., Gomi, S., Mihara, B., Shirai, T., Nogawa, S., Nozaki, H., Mikoshiba, K., and Fukuuchi, Y. (1994) Alteration of inositol 1,4,5-trisphosphate receptor after six-hour hemispheric ischemia in the gerbil brain. Neuroscience 61, 983–990.

    Article  PubMed  CAS  Google Scholar 

  36. Caterina, M. J., Schumacher, M. A., Tominaga, M., Rosen, T. A., Levine, J. D., and Julius, D. (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389, 816–824.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Walsh, D.A., Wharton, J. (1999). Autoradiography of Enzymes, Second Messenger Systems, and Ion Channels. In: Keen, M. (eds) Receptor Binding Techniques. Methods in Molecular Biology, vol 106. Springer, Totowa, NJ. https://doi.org/10.1385/0-89603-530-1:199

Download citation

  • DOI: https://doi.org/10.1385/0-89603-530-1:199

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-0-89603-530-0

  • Online ISBN: 978-1-59259-579-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics