Skip to main content

In Vitro and In Vivo Quantification of Adhesion Between Leukocytes and Vascular Endothelium

  • Protocol
Tissue Engineering Methods and Protocols

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 18))

Abstract

When a leukocyte enters a blood vessel, it may continue to move with flowing blood, collide with the vessel wall, adhere transiently or stably, and finally extravasate (1). These interactions are governed by both local hydrodynamic and adhesive forces. The former are determined by the vessel diameter, fluid velocity, viscosity, and hematocrit, and the latter by the number, strength and kinetics of bond formation between adhesion molecules, and by surface area of contact (16). Cellular deformability affects both types of forces (79). Two families of cell adhesion molecules (CAMs) are involved in leukocyte rolling and stable adhesion. In general, the selectins (P, L, and E) mediate rolling, while the IgG superfamily members (ICAM-1 and VCAM-1) on endothelial cells, with their cognate receptors (β2 and β1 integrin receptors) on the leukocytes, mediate firm adhesion, with some overlap in these functions (1012). The expression of CAMs on the endothelial cells and leukocytes can be modulated by cytokines secreted by a variety of cells (e.g., cancer cells, fibroblasts, macrophages) (13,14). Cellular deformability can be modulated by altering the cytoskeleton, membrane, or cytoplasm, with the cytoskeleton playing the dominant role (7,15,16). In this chapter, we describe methods to quantitate cellular deformability in vitro, CAM expression in vitro, leukocyte-endothelial interaction (LEI) in vitro, and LEI in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jain, R. K., Koenig, G. C, Dellian, M., Fukumura, D., Munn, L. L., and Melder, R. J. (1996) Leukocyte-endothelial adhesion and angiogenesis in tumors. Cancer Metastasis Rev. 15, 195–204.

    Article  CAS  Google Scholar 

  2. Bell, G. I. (1979) A theoretical model for adhesion between cells mediated by multivalent ligands. Cell Biophys. 1, 133–147.

    Article  CAS  Google Scholar 

  3. Dembo, M., Torney, D. C, Saxman, K., and Hammer, D. (1988) The reaction-limited kinetics of membrane-to-surface adhesion and detatchment. Proc. R. Soc. Lond. B 234, 55–83.

    Article  CAS  Google Scholar 

  4. Lawrence, M. B. and Springer, T. A. (1991) Leukocytes roll on a selectin at physiological flow rates: distinction from and prerequisite for adhesion through integrins. Cell 65, 859–873.

    Article  CAS  Google Scholar 

  5. Lipowsky, H. H., House, S. D., and Firrell, J. C. (1988) Leukocyte endothelium adhesion and microvascular hemodynamics, in Vascular Endothelium in Health and Disease (Chien, S., ed.), Plenum, New York, pp. 85–93.

    Google Scholar 

  6. Wattenbarger, M. R., Graves, D. J., and Lauffenburger, D. A. (1990) Specific adhesion of glycophorin liposomes to a lectin surface in shear flow. Biophys. J. 57, 765–777.

    Article  CAS  Google Scholar 

  7. Lipowsky, H. H., Riedel, D., and Shi, G. S. (1991) In vivo mechanical properties of leukocytes during adhesion to venular endothelium. Biorheology 28, 53–64.

    CAS  Google Scholar 

  8. Sasaki, A., Jain, R. K., Maghazachi, A. A., Goldfarb, R. H., and Herberman, R. B. (1989) Low deformability of lymphokine-activated killer cells as a possible determinant of in vivo distribution. Cancer Res. 49, 3742–3746.

    CAS  Google Scholar 

  9. Schmid-Schönbein, G.W. (1990) Leukocyte biophysics. Cell. Biophys. 17, 107–135.

    Google Scholar 

  10. von Andrian, U. H., Hansell, P., Chambers, J. D., Berger, E. M., Torres-Filho, I., Butcher, E. C, and Arfors, K. E. (1992) L-selecrin function is required for beta 2-integrin-mediated neutrophil adhesion at physiological shear rates in vivo. Am. J. Physiol. 263, H1034–H1044.

    Google Scholar 

  11. von Andrian, U. H., Chambers, J. D., McEvoy, L. M., Bargatze, R. F., Arfors, K.-E., and Butcher, E. C. (1991) Two-step model of leukocyte-endothelial cell interaction in inflammation: distinct roles for LECAM-1 and the leukocyte β2 integrins in vivo. Proc. Natl. Acad. Sci. USA 88, 7538–7542.

    Article  Google Scholar 

  12. Melder, R. J., Munn, L. L., Yamada, S., Ohkubo, C, and Jain, R. N. (1995) Selectin-and integrin-mediated T-lymphocyte rolling and arrest on TNF-α-activated endothelium: augmentation by erythorcytes. Biophys. J. 69, 2131–2138.

    Article  CAS  Google Scholar 

  13. Springer, T. A., Anderson, D. A., Rosenthal, A. S., and Rothlein, R., eds. (1988) Leukocyte Adhesion Molecules: Structure, Function, and Regulation. Springer-Verlag, New York.

    Google Scholar 

  14. Munn, L. L., Koenig, G. C, Jain, R. K., and Melder, R. J. (1995) Kinetics of adhesion molecule expression and spatial organization using targeted sampling fluorometry. Biotechniques 19, 622–631.

    CAS  Google Scholar 

  15. Melder, R. J. and Jain, R. K. (1994) Reduction of rigidity in human activated natural killer cells by thioglycollate treatment. J. Immunol. Methods 175, 69–77.

    Article  CAS  Google Scholar 

  16. Sasaki, A., Melder, R. J., Whiteside, T. L., Herberman, R. B., and Jain, R. K. (1991) Preferential localization of human adherent lymphokine-activated killer (A-LAK) cells in tumor microcirculation. J. Natl. Cancer Inst. 83, 433–437.

    Article  CAS  Google Scholar 

  17. Betticher, D. C, Keller, H., Maly, F. E., and Reinhart, W. H. (1993) The effect of endotoxin and tumor necrosis factor on erythrocyte and leucocyte deformability in vitro. Br. J. Haematol. 83, 130–137.

    Article  CAS  Google Scholar 

  18. Welch, D. R., Lobl, T. J., Seftor, E. A., Wack, P. J., Aeed, P. A., Yohem, K. H., Seftor, R. E., and Hendrix, M. J. (1989) Use of the membrane invasion culture system (MICS) as a screen for anti-invasive agents. Int. J. Cancer 43, 449–457.

    Article  CAS  Google Scholar 

  19. Downey, G. P., Doherty, D. E. Schwab, B. D., Elson, E. L., Henson, P. M., and Worthen, G. S. (1990) Retention of leukocytes in capillaries: role of cell size and deformability. J. Appl. Physiol. 69, 1767–1778.

    CAS  Google Scholar 

  20. Traykov, T. T. and Jain, R. K. (1987) Effect of glucose and galactose on red blood cell membrane deformability. Int. J. Microcirc. Clin. Exp. 6, 35–44.

    CAS  Google Scholar 

  21. Melder, R. and Jain, R. (1992) Kinetics of interleukin 2 induced changes in rigidity of human natural killer cells. Cell Biophys. 20, 161–176.

    CAS  Google Scholar 

  22. Sasaki, A., Jain, R. K., Maghazachi, A. A., Goldfarb, R. H., and Heberman, R. B. (1989) Low deformability of lymphokine-activated killer cells as a possible determinant of in vivo distribution. Cancer Res. 49, 3742–3746.

    CAS  Google Scholar 

  23. Krenik, K. D., Kephart, G. M., Offord, K. P., Dunnette, S. L., and Gleich, G. J. (1989) Comparison of antifading agents used in immunofluorescence. J. Immunol. Methods 111, 91–97.

    Article  Google Scholar 

  24. Yuan, F., Salehi, H. A., Boucher, Y., Vasthare, U. S., Tuma, R. E, and Jain, R. K. (1994) Vascular permeability and microcirculation of gliomas and mammary carcinomas transplanted in rat and mouse cranial window. Cancer Res. 54, 4564–4568.

    CAS  Google Scholar 

  25. Gallik, S., Usami, S., Jan, K.-M., and Chien, S. (1989) Shear stress-induced detachment of human polymorphonuclear leukocytes from endothelial cell monolayers. Biorheology 26, 823–834.

    CAS  Google Scholar 

  26. Hochmuth, R. M., Mohandas, N., Spaeth, E. E., Williamson, J. R., Blackshear, P. L. and Johnson, D. W. (1972) Surface adhesion, deformation and detachment at low shear of red cells and white cells. Trans. Am. Soc. Artif. Organs 18, 325–332.

    CAS  Google Scholar 

  27. Hubbell, J. A. and McIntire, L. V. (1986) Visualization and analysis of mural thrombogenesis on collegen, polyurethane and nylon. Biomaterials 7, 354–363.

    Article  CAS  Google Scholar 

  28. Lawrence, M. B., Mclntire, L. V, and Eskin, S. G. (1987) Effect of flow on polymorphonuclear leukocyte/endothelial cell adhesion. Blood 70, 1284–1290.

    CAS  Google Scholar 

  29. Munn, L. L., Melder, R. J., and Jain, R. K. (1996) Role of erythrocytes in leukocyte-endothelial interactions: mathematical model and experimental validation. Biophys. J. 71, 466–478.

    Article  CAS  Google Scholar 

  30. Leung, K. H. (1989) Human lymphokine-activated killer (LAK) cells I. Depletion of monocytes from peripheral blood mononuclear cells by L-phenylalanine methyl ester and optimization of LAK cell generation at high density. Cancer Immunol. Immunother. 30, 247–254.

    Article  CAS  Google Scholar 

  31. Weston, S. A. and Parish, C. R. (1990) New fluorescent dyes for lymphocyte migration studies: analysis by flow cytometry and fluorescence microscopy. J. Immunol. Methods 133, 87–97.

    Article  CAS  Google Scholar 

  32. Weston, S. A. and Parish, C. R. (1992) Calcein: a novel marker for lymphocytes which enter lymph nodes. Cytometry 13, 739–749.

    Article  CAS  Google Scholar 

  33. Menter, D. G., Patton, J. T., Updyke, T. V., Kerbel, R. S., Maamer, M., Mclntire, L. V., and Nicolson, G. L. (1992) Transglutaminase stabilizes melanoma adhesion under laminar flow. Cell Biophys. 18, 123–143.

    Google Scholar 

  34. Melder, R. J., Koenig, G., Munn, L. L., and Jain, R. K. (1997) Adhesion of activated natural killer cells to TNFα-treated endothelium under physiological flow conditions. Nat. Immun. 15, 154–163.

    CAS  Google Scholar 

  35. Munn, L. L., Melder, R. J., and Jain, R. K. (1994) Analysis of cell flux in the parallel plate flow chamber: implications for cell capture studies. Biophys. J. 67, 889–895.

    Article  CAS  Google Scholar 

  36. Schmid-Schönbein, G.W, Fung, Y-C., and Zweifach, B.W (1975) Vascularendothelium-leukocyte interaction. Sticking shear force in venules. Circ. Res. 36, 173–184.

    Google Scholar 

  37. Fukumura, D., Yuan, R, Monsky, W., Chen, Y, and Jain, R. K. (1997) Effect of host microenvironment on the microcirculation of human colon adenocarcinoma. Am. J. Pathol. 150, 679–688.

    Google Scholar 

  38. Ohkubo, C, Bigos, D., and Jain, R. K. (1991) IL-2 induced leukocyte adhesion to the normal and rumor microvascular endothelium in vivo and its inhibition by dextran sulfate: implications for vascular leak syndrome. Cancer Res. 51, 1561–1563.

    CAS  Google Scholar 

  39. Nugent, L. J. and Jain, R. K. (1984) Extravascular diffusion in normal and neoplastic tissues. Cancer Res. 44, 238–244.

    CAS  Google Scholar 

  40. Zawicki, D. R, Jain, R. K., Schmid-Schonbein, G. W., and Chien, S. (1981) Dynamics of neovascularization in normal tissues. Microvasc. Res. 21, 37–47.

    Article  Google Scholar 

  41. Dudar, T. E. and Jain, R. K. (1983) Microcirculatory flow changes during tissue growth. Microvasc. Res. 25, 1–21.

    Article  CAS  Google Scholar 

  42. Fukumura, D., Salehi, H. A., Witwer, B., Tuma, R. R, Melder, R. J., and Jain, R. K. (1995) Tumor necrosis factor alpha-induced leukocyte adhesion in normal and tumor vessels: effect of tumor type, transplantation site, and host strain. Cancer Res. 55, 4824–4829.

    CAS  Google Scholar 

  43. Melder, R. J., Salehi, H. A., and Jain, R. K. (1995) Interaction of activated natuiral killer cells with normal and tumor vessels in cranial windows in mice. Microvasc. Res. 50, 35–44.

    Article  CAS  Google Scholar 

  44. Yamada, S., Mayadas, T. N., Uan, R, Wagner, D. D., Hynes, R. O., Melder, R. J., and Jain, R. K. (1995) Rolling in P-selectin-deficient mice is reduced but not eliminated in the dorsal skin. Blood 86, 3487–3492.

    CAS  Google Scholar 

  45. Leunig, M. Yuan, R, Menger, M. D., Boucher, Y, Goetz, A. E., Messmer, K., and Jain, R. K. (1992) Angiogenesis, microvascular architechture, microhemodynamics, and interstitial fluid pressure during early growth of human adenocarcinoma LS174T in SCID mice. Cancer Res. 52, 6553–6560.

    CAS  Google Scholar 

  46. Kurose, I., Fukumura, R, Miura, S., Suematsu, M., Sekizuka, E., Nagata, H., and Tsuchiya, M. (1993) Nitric oxide mediates vasoactive effects of endothelin-3 on rat mesenteric microvascular beds in vivo. Angiology 44, 483–490.

    Article  CAS  Google Scholar 

  47. Fukumura, F., Yuan, F., Endo, M., and Jain, R. K. (1997) Role of nitric oxide in tumor microcirculation: blood flow, vascular permeability, and leukocyte-endothelial interactions. Am. J. Pathol. 150, 713–725.

    CAS  Google Scholar 

  48. Dellian, M., Witwer, B. P, Salehi, H. A, Yuan, F., and Jain, R. K. (1996) Quantitation and physiological characterization of angiogenic vessels in mice: effect of basic fibrooblast growth factor, vascular endothelial growth factor/vascular permeability factor, and host microenvironment. Am. J. Pathol. 149, 59–72.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Jain, R.K., Munn, L.L., Fukumura, D., Melder, R.J. (1999). In Vitro and In Vivo Quantification of Adhesion Between Leukocytes and Vascular Endothelium. In: Morgan, J.R., Yarmush, M.L. (eds) Tissue Engineering Methods and Protocols. Methods in Molecular Medicine™, vol 18. Humana Press. https://doi.org/10.1385/0-89603-516-6:553

Download citation

  • DOI: https://doi.org/10.1385/0-89603-516-6:553

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-516-4

  • Online ISBN: 978-1-59259-602-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics