Skip to main content

Detection of Neuropeptides by Immunocytochemistry

  • Protocol
Neurotransmitter Methods

Part of the book series: Methods in Molecular Biology ((MIMB,volume 72))

Abstract

Neuropeptides constitute the largest and most diverse class of signaling substances known in metazoans. Over the last 20 yr it has become apparent that neuropeptides have important roles as neurohormones, neuromodulators, cytokines, morphogenetic factors, and possibly in some cases, as true neurotransmitters. Each neuropeptide may even be multifunctional and exist in several isoforms in a given animal species. In the search for functions of neuropeptides, it has been critical to be able to localize sites of synthesis and release. Immunocytochemistry (ICC) has been instrumental in the accurate mapping of the cellular and subcellular distribution of neuropeptides in tissue. Other immunological assays, such as radioimmunoassay (RIA) and immuno-enzymatic assay (ELISA) provide powerful complements for quantification of neuropeptides. Several important discoveries related to neuropeptides have relied on ICC, for example: Different neuropeptides have very specific distributions in small populations of neurons (13), neuropeptides are commonly colocalized with low-mol-wt neurotransmitters or other neuropeptides (4), the chemical diversity of neurons is far greater than previously suspected (2,3), and neuropeptide synthesis and release can be episodic (5).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guillemin, R. (1978) Peptides in the brain: the new endocrinology of the neurone. Science 202, 390–402.

    Article  PubMed  CAS  Google Scholar 

  2. Hökfelt, T, Johansson, O., Ljungdahl, Å., Lundberg, J. M., and Schultzberg, M. (1980) Peptidergic neurones. Nature 284, 515–521.

    Article  PubMed  Google Scholar 

  3. Krieger, D. T. (1983) Brain peptides: what, where, why? Science 222, 975–985.

    Article  PubMed  CAS  Google Scholar 

  4. Lundberg, J. M. and Hökfelt, T. (1983) Coexistence of peptides and classical neurotransmitters. Zkends Neurosci. 6, 325–333.

    Article  CAS  Google Scholar 

  5. Hökfelt, T. (1991) Neuropeptides in perspective: the last ten years. Neuron. 7, 867–879.

    Article  PubMed  Google Scholar 

  6. Van Leeuwen, F. (1987) Immunocytochemical techniques in peptide localization. Possibilities and pitfalls, in Neuromethods 6. Peptides (Boulton, A. A., Baker, G. B., and Pittman, Q. G., eds.), Humana, Clifton, NJ, pp 73–111.

    Google Scholar 

  7. Larsson, L. I. (1993) Antibody specificity in immunocytochemistry, in Immunohistochemistry II: IBRO Handbook Series: Methods in Neurosciences, vol. 14 (Cuello, A. C., ed.), Wiley, Chichester, UK, pp. 79–106.

    Google Scholar 

  8. Burrin, D. H. (1986) Immunochemical techniques, in A Biologist’s Guzde to Principles and Techniques of Practical Biochemistry (Wilson, K. and Goulding, K. H., eds.), Edward Arnold, London, UK, pp. 116–152.

    Google Scholar 

  9. Schooneveld, H., Romberg-Privee, H. M., and Veenstra, J. A. (1986) Immunocytochemical differentiation between adipokinetic hormone (AKH)-like peptides in neurons and glandular cells in the corpus cardiacurn of Locusta migratoria and Periplaneta americana with C-terminal and N-terminal specific antisera to AKH. Cell Tissue Res. 243, 9–14.

    Article  CAS  Google Scholar 

  10. Diederen, J. H. B., Maas, H. A, Pel, H. J., Schooneveld, H., Jansen, W. F., and Vullings, H. G. B. (1987) Co-localization of the adipokinetic hormones I and II in the same glandular cells and in the same granules of corpus cardiacum of Locusata migratoria and Schistocerca gregaria. Cell Tissue Res. 249, 379–389.

    Article  CAS  Google Scholar 

  11. McCormick, J. and Nichols, R. (1993) Spatial and temporal expression identify dromyosuppressin as a brain-gut peptide in Drosophila. melanogaster J. Comp. Neurol. 338, 279–288.

    Article  Google Scholar 

  12. Tibbetts, M. F. and Nichols, R (1993). Immunocytochemistry of sequence-related neuropeptides in Drosophila. Neuropeptides 24, 321–325.

    CAS  Google Scholar 

  13. Boersma, W. J. A., Haaijman, J. J., and Claasen, E. (1993) Use of synthetic peptide determinants for the production of antibodies, in Immunohistochemistry II. IBRO Handbook Series: Methods in Neurosciences, vol. 14 (Cuello, A. C., ed.), Wiley, Chichester, UK, pp. 1–77.

    Google Scholar 

  14. Posnett, D. N. and Tam, J. P. (1989) Multiple antigenic peptide method for producing antipeptide site specific antibodies, in Methods in Enzymology (Langone, J. J., ed.), Academic, New York, pp 739–746.

    Google Scholar 

  15. Hekimi, S. and O’Shea, M. (1989) Antisera against AKHs and AKH precursors for experimental studies of an insect neurosecretory system. Insect Biochem. 19, 79–83.

    Article  CAS  Google Scholar 

  16. Schneider, L. E., Sun, E. T., Garland, D. J, and Taghert, P. H. (1993) An immunocyto-chemical study of the FMRFamide neuropeptide gene products, in Drosophila. J. Comp. Neurol. 337, 446–460.

    Article  CAS  Google Scholar 

  17. Kohler, G. and Milstein, C. (1976) Derivation of specific antibody producing tissue culture and tumor lines by cell fusion. Eur. J. Immunol. 6, 511–522.

    Article  PubMed  CAS  Google Scholar 

  18. Cuello, A. C. and Côté, A. (1993) Preparation and application of conventional and non-conventional monoclonal antibodies, in Immunohistochemistry II. IBRO Handbook Series: Methods in Neuroscience, vol. 14 (Cuello, A. C., ed.), Wiley, Chichester, UK, pp. 107–145.

    Google Scholar 

  19. Eckert, M. and Ude, J. (1983) Immunocytochemical techniques for demonstration of peptidergic neurons, in Functional Neuroanatomy (Strausfeld, N. J., ed.), Springer, Berlin, pp. 267–301.

    Chapter  Google Scholar 

  20. Benoit, R., Ling, N., Brazeau, P., Lavielle, S., and Guillemin, R. (1987) Peptides. Strategies for antibody production and radioimmunoassays, in Neuromethods 6 Peptides (Boulton, A. A., Baker, G. B., and Pittman, Q. G., eds.), Humana, Clifton, NJ, pp 43–72.

    Google Scholar 

  21. Catty, D. and Raykundalia, C. (1988) Production and quality control of polyclonal antibodies, in Antibodies: A Practical Approach, vol. 2 (Catty, D., ed.), IRL, Oxford, UK, pp 19–79.

    Google Scholar 

  22. Harlow, E. and Lane, D. (1988) Antibodies: A Laboratory Manual Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  23. Claassen, E., Zegers, N. D., Laman, J. D., and Boersma, W. J. A. (1993) Use of synthetic peptides for the production of site (amino acid) specific polyclonal and monoclonal antibodies, in Generation of Antibodies by Cell and Gene Immortalization: Immunonology, vol. 7 (Terhorst, C., Malavasi, F., and Albertini, A., eds.), Karger, Basel, pp. 150–161.

    Google Scholar 

  24. Nässel, D. R. (1996) Advances in the immunocytochemical localization of neuroactive substances in the insect nervous system. J. Neurosci. Methods, in press.

    Google Scholar 

  25. Cuello, A. C., ed. (1983) Immunohistochemistry: IBRO Handbook Series: Methods in Neurosciences, vol. 3, Wiley, Chichester, UK.

    Google Scholar 

  26. Cuello, A. C., ed. (1993) Immunohistochemistry II: IBRO Handbook Series: Methods in Neurosciences, vol. 14, Wiley, Chichester, UK.

    Google Scholar 

  27. Elde, R. (1983) Immunocytochemistry, in Brain Peptides (Krieger, D. T., Brownstein, M. J., and Martin, J. B., eds.), Wiley, New York, pp. 485–494.

    Google Scholar 

  28. Polak, J. M. and Van Norden, S., eds. (1983) Immunocytochemistry. Practical Applications in Pathology and Biology Wright, Bristol, UK.

    Google Scholar 

  29. Beesley, J. E., ed. (1993) Immunocytochemistry. A Practical Approach. IRL, Oxford, UK.

    Google Scholar 

  30. Patel, N. H. (1994) Imaging neuronal subsets and other cell types in whole-mount Drosophila embryos and larvae using antibody probes, in Drosophila melanogaster: Practical Uses in Cell and Molecular Biology: Methods in Cell Biology Series, vol. 44 (Goldstein, L. S. B. and Fyrberg, E. A., eds.), Academic, San Diego, CA, pp. 445–487.

    Google Scholar 

  31. Stefanini, M., de Martino, C., and Zamboni, L. (1967) Fixation of ejaculated spermatozoa for electron-microscopy. Nature 216, 173,174.

    Article  Google Scholar 

  32. Zamboni, L. and de Martino, C. (1967) Buffered picric-acid formaldehyde: a new rapid fixative for electron-microscopy. J. Cell Biol. 35, 148A.

    Google Scholar 

  33. Boer, H. H., Schot, L. P C., Roubos, E. W., Maat, A., Lodder, J. C., Reichelt, D., and Swaab, D. F. (1979) ACTH-like immunoreactivity in two electrotomically coupled giant neurons in the pond snail Lymnaea stagnalis. Cell Tissue Res. 202, 231–240.

    Article  PubMed  CAS  Google Scholar 

  34. Bu’Lock, A. J., Vaillant, C., Dockray, G. J., and Bu’Lock, J. D. (1982) A rational approach to the fixation of peptidergic nerve cell bodies in the gut using parabenzoquinone. Histochem. 74, 49–55.

    Article  CAS  Google Scholar 

  35. Platt, J. L. and Michael, A. F. (1983) Retardation of fading and enhancement of intensity of immunofluorescence by p-phenylenediamine. J. Histochem. Cytochem. 31, 840–842.

    Article  PubMed  CAS  Google Scholar 

  36. Florijn, R. J., Slats, J., Tanke, H. J., and Raap, A. K. (1995) Analysis of antifading reagents for fluorescence microscopy. Cytometry 19, 177–182.

    Article  PubMed  CAS  Google Scholar 

  37. Ormerod, M. G. and Imrie, S. F. (1992) Enzyme-antienzyme method for immunohisto-chemistry, in Methods in Molecular Biology, vol. 10: Immunochemical Protocols (Manson, M. M., ed.), Humana, Totowa, NJ, pp. 117–124.

    Chapter  Google Scholar 

  38. Moffett, J. R., Namboodiri, M.A.A., and Neale, J. H. (1993). Enhanced carbodiimide fixation for immunohistochemistry—application to the comparative distributions of N-acetylaspartylglutamate and N-acetylaspartate immunoreactivities in rat brain. J. Histochem. Cytochem. 41, 559–570.

    Article  PubMed  CAS  Google Scholar 

  39. Eldred, W. D., Zucker, C., Karten, H. J., and Yazulla, S. (1983) Comparison of fixation and penetration enhancement techniques for use in ultrastructural immunocytochemistry. J. Histochem. Cytochem. 31, 285–292.

    Article  PubMed  CAS  Google Scholar 

  40. Murray, G. J. (1992) Enzyme histochemistry and immunohistochemistry with freeze-dried or freeze-substituted resin embedded tissue. Histochem. J. 24, 399–408.

    Article  PubMed  CAS  Google Scholar 

  41. Yamashita, S. and Yasuda, K. (1992) Freeze-substitution fixation for immunohistochemistry at the light microscopic level: effects of solvent and chemical fixatives. Acta Histochem. Cytochem. 25, 641–650.

    Article  CAS  Google Scholar 

  42. Steinbrecht, R. A. and Zierold, K. (1987) Cryotechniques in Biological Electron Microscopy Springer-Verlag, Berlin, Heidelberg.

    Book  Google Scholar 

  43. Zandbergen, M. A., Peute, J., Verkley, A. J., and Goos, H. J. Th. (1992) Application of cryosubstitution in neurohormone and neurotransmitter-immunocytochemistry. Histochemistry 97, 133–139.

    Article  PubMed  CAS  Google Scholar 

  44. Finley, J. C. V. and Petrusz, P. (1982) The use of proteolytic enzymes for improved localization of tissue antigens with immunocytochemistry, in Techniques in Immunocytochemistry (Bullock, G. R. and Petrusz, P., eds.), Academic, London, UK, pp. 239–249.

    Google Scholar 

  45. Costa, M. and Furness, J. B. (1983) Immunohistochemistry on whole mount preparation, in Immunohistochemistry: IBRO Handbook Series: Methods in Neurosciences, vol. 3 (Cuello, A. C., ed.), Wiley, Chichester, UK, pp. 373–397.

    Google Scholar 

  46. Côté, A., Ribeiro-Da-Silva, A., and Cuello, A. C. (1993) Current protocols for light microscopy immunocytochemistry, in Immunohistochemistry II: IBRO Handbook Series: Methods in Neurosciences, vol. 14 (Cuello, A. C., ed.), Wiley, Chichester, UK, pp. 147–168.

    Google Scholar 

  47. Klemm, N., Hustert, R., Cantera, R., and Nassel, D. R. (1986) Neurons reactive to antibodies against serotonin in the stomatogastric nervous system and in the alimentary canal of locust and crickets (Orthoptera, insecta). Neurosci. 17, 247–261.

    Article  CAS  Google Scholar 

  48. Bigbee, J. W., Kosek, J. C., and Eng, L. F. (1977) Effects of primary antiserum dilution on staining of antigen rich tissues with the peroxidase anti-peroxidase technique. J. Histochem. Cytochem. 25, 443–447.

    Article  PubMed  CAS  Google Scholar 

  49. Maxwell, M. H. (1978) Two rapid and simple methods used for the removal of resins from 1.0 µm-thick epoxy sections. J. Microscop. 112, 253–255.

    Article  CAS  Google Scholar 

  50. Bayer, E. A., Skutelsky, E., and Wilchek, M. (1980) The avidin-biotin complex in affinity cytochemistry. Methods Enzymol. 62, 308–315.

    Article  Google Scholar 

  51. Würden, S. and Homberg, U. (1993) A simple method for immunofluorescent double staining with primary antisera from the same species. J. Histochem. Cytochem. 41, 627–630.

    Article  PubMed  Google Scholar 

  52. Nakane, P. K. (1971) Application of peroxidase-labeled antibodies to intracellular localization of hormones. Acta Endocrinol. (Kbh) Suppl. 153, 190–204.

    CAS  Google Scholar 

  53. Sternberger, L. A. (1979) Immunocytochemistry. 2nd ed. Wiley, New York.

    Google Scholar 

  54. Hsu, S. M., Raine, L. and Fanger, H. (1981) The use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem. Cytochem. 29, 577–580.

    Article  PubMed  CAS  Google Scholar 

  55. Nassel, D. R. (1983) Horseradish peroxidase and other heme proteins as neuronal markers, in Functional Neuroanatomy (Strausfeld, N. J., ed.), Springer, Berlin, pp. 44–91.

    Chapter  Google Scholar 

  56. Nassel, D. R. and Elekes, K. (1984) Ultrastructural demonstration of serotonin immunoreactivity in the nervous system of an insect (Calliphora erythrocephala). Neurosci. Lett. 48, 203–210.

    Article  PubMed  CAS  Google Scholar 

  57. Somogyi, P., Hodgson, A. J., and Smith, A. D. (1979) An approach to tracing neuron networks in the cerebral cortex and basal ganglia. Combination of Golgi-staining, retrograde transport of horseradish peroxidase and anterograde degeneration of synaptic boutons in the same material. Neuroscience 4, 1805–1852.

    Article  PubMed  CAS  Google Scholar 

  58. Nässel, D. R. and O’Shea, M. (1987) Proctolin-like immunoreactive neurons in the blowfly central nervous system. J. Comp. Neurol. 265, 437–454.

    Article  PubMed  Google Scholar 

  59. Green, J. A. and Manson, M. M. (1992) Double label immunohistochemtstry on tissue sections using alkaline phosphatase and peroxidase conjugates, in Methods in Molecular Biology, vol. 10: Immunochemical Protocols (Manson, M., ed.), Humana, Totowa, NJ, pp. 125–129.

    Chapter  Google Scholar 

  60. Boorsma, D. M. and Steinbusch, H. W. M. (1988) Immunoenzyme double staining, in Molecular Neuroanatomy (Van Leeuwen, F. W., Buijs, R. M., Pool, C. W., and Path, O., eds.), Elsevier Science, Amsterdam, pp. 289–299.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Nässel, D.R., Ekström, P. (1997). Detection of Neuropeptides by Immunocytochemistry. In: Rayne, R.C. (eds) Neurotransmitter Methods. Methods in Molecular Biology, vol 72. Springer, Totowa, NJ. https://doi.org/10.1385/0-89603-394-5:71

Download citation

  • DOI: https://doi.org/10.1385/0-89603-394-5:71

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-0-89603-394-8

  • Online ISBN: 978-1-59259-558-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics