Skip to main content

Antisense Affinity Depletion of RNP Particles

Application to Spliceosomal snRNPs

  • Protocol
In Vitro Transcription and Translation Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 37))

  • 1220 Accesses

Abstract

Complexes composed of RNA and protein play essential roles at multiple levels in the gene expression pathway, including transcription, RNA processing, transport, and translation. In this chapter, we describe a generally applicable system that allows the function of specific RNA-protein complexes to be investigated. Previous strategies used to study the function of small nuclear ribonucleoprotein particles (snRNPs) in vitro have included inhibition with specific antibodies (1, 2), RNase H cleavage of targeted snRNAs in the presence of complementary DNA oligonucleotides (24), and “antisense masking” of specific snRNA sequences with 2′-OMe RNA oligonucleotides (79). A potential disadvantage of these methods is that an RNP particle inactivated, but not physically removed from an extract may still retain separate functional domains.

Thus, in order to map regions of functional importance, it may be necessary to remove specific complexes completely from in vitro extracts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Padgett, R. A., Mount, S. M., Steitz, J. A., and Sharp, P. A. (1983) Splicing of messenger RNA precursors is inhibited by antisera to small nuclear ribonucleoprotein. Cell 35, 101–107.

    Article  PubMed  CAS  Google Scholar 

  2. Black, D. L., Chabot, B., and Steitz, J. A. (1985) U2 as well as Ul small nuclear ribonucleoproteins are involved in pre-mRNA splicing. Cell 42, 737–750.

    Article  PubMed  CAS  Google Scholar 

  3. Kramer, A., Keller, W., Appel, B., and Luhrmann, R. (1984) The 5′ terminus of the RNA moiety of Ul small nuclear ribonucleoprotein particles is required for the splicing of messenger RNA molecules. Cell 38, 299–307.

    Article  PubMed  CAS  Google Scholar 

  4. Kramer, A. R. and Maniatis, T. (1985) Multiple factors including the small nuclear ribonucleoproteins Ul and U2 are necessary for pre-mRNA splicing in vitro. Cell 42, 725–736.

    Article  Google Scholar 

  5. Black, D. L. and Steitz, J. A. (1986) Pre-mRNA splicing in vitro requires intact U4AI6 small nuclear ribonucleoprotein. Cell 46, 697–704.

    Article  PubMed  CAS  Google Scholar 

  6. Berget, S. M. and Robberson, B. L. (1986) U1, U2, and U4/6 small nuclear ribonucleoproteins are required for in vitro splicing but not polyadenylation. Cell 46, 691–696.

    Article  PubMed  CAS  Google Scholar 

  7. Lamond, A. I., Sproat, B. S., Ryder, U., and Hamm, J. (1989) Probing the structure and function of U2 snRNP with antisense oligonucleotides made of 2′-OMe RNA. Cell 58, 383–390.

    Article  PubMed  CAS  Google Scholar 

  8. Blencowe, B. J., Sproat, B. S., Ryder, U., Barabmo, S., and Lamond, A. I. (1989) Antisense probing of the human U4/U6 snRNP with biotinylated 2′-OMe RNA oligonucleotides. Cell 59, 531–539.

    Article  PubMed  CAS  Google Scholar 

  9. Barabino, S, M. L., Sproat, B. S., Ryder, U., Blencowe, B. J., and Lamond, A. I (1989) Mapping U2 snRNP:pre-mRNA interactions using biotinylated antisense oligonucleotides. EMBO J. 8, 4171–4178.

    PubMed  CAS  Google Scholar 

  10. Barabino, S. M. L., Blencowe, B. J., Ryder, U., Sproat, B. S., and Lamond, A. I. (1990) Targeted snRNP depletion reveals an additional role for mammalian Ul snRNP in spliceosome assembly. Cell 63, 293–302.

    Article  PubMed  CAS  Google Scholar 

  11. Lamm, G. M., Blencowe, B. J., Sproat, B. S., Iribarren, A. M, Ryder, U., and Lamond, A. I. (1991) Antisense probes containing 2-aminoadenosine allow efficient depletion of U5 snRNP from HeLa splicing extracts. Nucleic Acids Res. 19, 3193–3198.

    Article  PubMed  CAS  Google Scholar 

  12. Blencowe, B. J., Carmo-Fonseca, M., Behrens, S.-E., Lührmann, R., and Lamond, A. I. (1993) Interaction of the human autoantigen p150 with splicing snRNPs. J. Cell Sci. 105, 685–697.

    PubMed  CAS  Google Scholar 

  13. Sproat, B. S., Lamond, A. I., Beijer, B., Neuner, P., and Ryder, U. (1989) Highly efficient chemical synthesis of 2′-O-methyloligonbonucleotides and tetrabiotinylated derivatives; novel probes that are resistant to degradation by RNA or DNA specific nucleases. Nucleic Acids Res. 17, 3373–3386.

    Article  PubMed  CAS  Google Scholar 

  14. Wolff, T. and Binderief, A. (1992) Reconstituted mammalian U4/U6 snRNP complements splicing: a mutational analysis. EMBO J. 11, 345–359.

    PubMed  CAS  Google Scholar 

  15. Sproat, B. S., Beijer, B., and Iribarren, A. (1990) New synthetic routes to protected purine 2′-0-methylriboside-3′-O-phosphoramidites using a novel alkylation procedure. Nucleic Acids Res. 18, 41–49.

    Article  PubMed  CAS  Google Scholar 

  16. Pieles, U., Sproat, B. S., and Lamm, G. M. (1990) A protected biotin containing deoxycytidine building block for solid phase synthesis of biotinylated oligonucleotides. Nucleic Acids Res. 18, 4355–4360.

    Article  PubMed  CAS  Google Scholar 

  17. Dignam, J. D., Lebowitz, R. M., and Roeder, R. G. (1983) Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 11, 1475–1489.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Humana Press Inc.

About this protocol

Cite this protocol

Blencowe, B.J., Barabino, S.M.L. (1995). Antisense Affinity Depletion of RNP Particles. In: Tymms, M.J. (eds) In Vitro Transcription and Translation Protocols. Methods in Molecular Biology, vol 37. Humana Press. https://doi.org/10.1385/0-89603-288-4:67

Download citation

  • DOI: https://doi.org/10.1385/0-89603-288-4:67

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-288-0

  • Online ISBN: 978-1-59259-524-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics