Skip to main content

An Animal Model of Stimulant Psychoses

  • Protocol
Animal Models in Psychiatry, I

Part of the book series: Neuromethods ((NM,volume 18))

Abstract

The rationale for animal models of psychomotor stimulant-induced psychosis is both simple and complex. The simple rationale is that, since stimulants induce psychosis, an understanding of the neurochemical effects of stimulants will provide a similar knowledge of the neurochemical basis of psychosis. The most thorough way of determining the neurochemical effects of stimulants is by studying nonhuman animals. Close inspection of each element in this rationale reveals its true complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • American Psychiatric Association (1987) Diagnostic and Statistical Mart of Mental Disorders (3rd ed, revised), Washington, DC.

    Google Scholar 

  • Angrist B. (1983) Psychoses induced by central nervous system stimulants and related drugs, in Stimulants: Neurochemical, Behavioral, and Clinical Perspectives (Creese, I., ed.), Raven, New York, pp. 130.

    Google Scholar 

  • Angrist B. and Gershon S. (1977) Clinical response to several dopamine agonists in schizophrenics and nonschizophrenic subjects (Costa E.and Gessa G. L., eds.), Raven Press, New York, pp. 677–680.

    Google Scholar 

  • Antelman S. M. and Chiodo L. A. (1981) Dopamine autoreceptor subsensitivity: A mechanism common to the treatment of depression and the induction of amphetamine psychosis. Biol. Psychiat. 16, 717–727.

    PubMed  CAS  Google Scholar 

  • Baker G. B., Coutts R. T., and Rao T. S. (1987) Neuropharmacological and neurochemical properties of N-(2-cyanoethyl)-2-phenylethylamine,aprodrug of 2-phenylethylamine. Br. J. Pharmacol. 92, 243–255.

    PubMed  CAS  Google Scholar 

  • Baudry M., Costentin J., Marcais H., Martres M. P., Protais P., and Schwartz J. C. (1977) Decreased responsiveness to low doses of apomorphine after dopamine agonists and the possible involvement of hyposensitivity of dopamine “autoreceptors.” Neurosci. Left. 4, 203–207.

    Article  CAS  Google Scholar 

  • Camp D. M. and Robinson T. E. (1988) Susceptibility to sensitization. I. Sex differences in the enduring effects of chronic D-amphetamine treatment on locomotion, stereotyped behavior and brain monoamines. Behav. Brain Res. 30, 55–68.

    Article  PubMed  CAS  Google Scholar 

  • Connell P. H. (1958) Amphetamine psychosis. Maudsley Monograph No. 5. Chapman Hall, London.

    Google Scholar 

  • Conway P. G. and Uretsky N. J. (1982) Role of striatal dopaminergic receptors in amphetamine-induced behavioral facilitation. J. Pharmacol. Exp. Ther. 221, 650–655.

    PubMed  CAS  Google Scholar 

  • Davis R. E., Sant W. W., and Ellison G. (1985) Continuous low-level apomorphine administration induces motor abnormalities and hallucino-gen-like behaviors. Psychopharmacology 85, 1–7.

    Article  PubMed  CAS  Google Scholar 

  • Eichler A. J., Antelman S. M., and Black C. J. (1980) Amphetamine stereotypy is not a homogeneous phenomenon: sniffing and licking show distinct profiles of sensitization and tolerance. Psychopharmacology 68, 287–290.

    Article  PubMed  CAS  Google Scholar 

  • Eison M. S., Eison A. S., and Iversen S. D. (1983) Two routes of continuous amphetamine administration induce different behavioral and neurochemical effects in the rat. Neurosci. Lett. 39, 313–319.

    Article  PubMed  CAS  Google Scholar 

  • Ellison G. (1983) Phasic alterations in dopamine metabolites following continuous administration of amphetamine. Brain Res. 268, 387–389.

    Article  PubMed  CAS  Google Scholar 

  • Ellison G. and Ratan R. (1982) The late stage following continuous amphetamine administration to rats is correlated with altered dopamine but not serotonin metabolism. Life Sci. 31, 771–777.

    Article  PubMed  CAS  Google Scholar 

  • Fray P. J., Sahakian B. J., Robbins T. W, Koob G. F., and Iversen S. D. (1980) An observational method for quantifying the behavioral effects of dopamine agonists: Contrasting effects of d-amphetamine and apomorphine. Psychopharmacology 69, 253–259.

    Article  PubMed  CAS  Google Scholar 

  • Gandolfi O., Dall’Olio R., Vaccheri A., Roncada P., and Montanaro N. (1988) Responses to selective D-l and D-2 agonists after repeated treatment with selective D-l and D-2 antagonists. Pharmacol. Biochem. Behav. 30, 463–469.

    Article  PubMed  CAS  Google Scholar 

  • Gately P. F., Segal D. S., and Geyer M. A. (1987) Sequential changes in behavior induced by continuous infusions of amphetamine in rats. Psychopharmacology 91, 217–220.

    Article  PubMed  CAS  Google Scholar 

  • Greenshaw A. J. (1986) Osmotic Mini-pumps: A convenient program for weight-adjusted filling concentrations. Brain Res. Bull. 16, 759–761.

    Article  PubMed  CAS  Google Scholar 

  • Griffith J. D., Oates J., and Cavanaugh J. (1968) Paranoid episodes induced by a drug. J. Am. Med. Assoc. 205, 39.

    Google Scholar 

  • Haberman S. J. (1973) The analysis of residuals in cross-classified tables. Biometrics 29, 205–220.

    Article  Google Scholar 

  • Hanson G. R., Ritter J. K., Schmidt C. J., and Gibb J. W. (1986) Response of mesolimbic substance P to methamphetamine treatment. Eur. J. Pharmacol. 128, 265–268.

    Article  PubMed  CAS  Google Scholar 

  • Hess E. J., Albers L. J., Le H., and Creese I. (1986) Effects of chronic SCH23390 treatment on the biochemical and behavioral properties of D2, and D2 dopamine receptors: Potentiated behavioral responses to a D2 dopamine agonist after selective D1 dopamine receptor upregulation. J.Pharmacol. Exp. Ther. 238, 846–854.

    PubMed  CAS  Google Scholar 

  • Janowsky D. S. and Davis J. M. (1974) Dopamine, psychomotor stimulants,and schizophrenia: Effects of methylphenidate and the stereoisomers of amphetamine in schizophrenics, in Neuroysychoyharmacoloy of Monoamines Regulatory Enzymes (Usdin E., ed.), Raven, New York, pp. 317–323.

    Google Scholar 

  • Kuczenski R., Leith N. J., and Applegate C. D. (1983) Striatal dopamine metabolism in response to apomorphine: The effects of repeated amphetamine pretreatment. Brain Res. 258, 333–337.

    Article  PubMed  CAS  Google Scholar 

  • Lieberman J. A., Kane J. M, and Alvir J. (1987) Provocative tests with psycho-stimulant drugs in schizophrenia. Psychopharmacology 91, 415–433.

    Article  PubMed  CAS  Google Scholar 

  • Lyon M, and Robbins T. W. (1975) The action of central nervous system stimulant drugs: A general theory concerning amphetamine effects, in Current Developments in Psycholpharmacology, vol. 2 (Essman W. and Valzelli L., eds.), Spectrum, New York, pp. 79–163.

    Google Scholar 

  • Martin-Iverson M. T. and Iversen S. D. (1989) Day and night locomotor activity effects during administration of (+)-amphetamine. Pharmacol. Biochem Behav. 34, 465–471.

    Article  PubMed  CAS  Google Scholar 

  • Martin-Iverson M. T. and McManus D. J. Stimulant-conditioned locomotion is not affected by blockade of Dl and/or D2 dopamine receptors during conditioning. Brain Res. 521, 175–184.

    Google Scholar 

  • Martin-Iverson M. T., Coutts R. T., and Baker G. B. (1989) Behavioral effects of (+)-amphetamine and a side-chain fluorinated (+)-amphetamine. J. Neurochem. 52 (Suppl), S200D.

    Google Scholar 

  • Martin-Iverson M. T., Iversen S. D., and Stahl S. M. (1988a) Long-term motor stimulant effects of (+)-4-propyl-9-hydroxynaphthoxazine (PHNO), a dopamine D-2 receptor agonist: Interactions with a doparnine D-1 receptor antagonist and agonist. Eur. J Pharmacol. 149, 25–31.

    Article  PubMed  CAS  Google Scholar 

  • Martin-Iverson M. T., Leclere J, P., and Fibiger H. C. (1983) Cholinergic-dopaminergic interactions and the mechanisms of action of antidepressants. Eur. J. Pharmacol. 94, 19–201.

    Article  Google Scholar 

  • Martin-Iverson M. T., Stahl S. M., and Iversen S. D. (1987) Factors determining the behavioural consequences of continuous treatment with 4-propyl-9-hydroxynaphthoxazine, a selective dopamine D2 agonist, in Parkinson’s Disease: Clinical and Experimental Advances (Rose F. C, ed.), John Libbey, London, pp. 169–177.

    Google Scholar 

  • Martin-Iverson M. T., Stahl S.M., and Iversen S.D. (1988b) Chronic administration of a selective dopamine D-2 agonist: Factors determining behavioral tolerance and sensitization. Psychopharmacology 95, 534–539.

    Article  PubMed  CAS  Google Scholar 

  • Martres M. P., Costentin J., Baudry M., Marcais H., Protais P., and Schwartz J. C. (1977) Long-term changes in the sensitivity of pre-and postsynaptic dopamine receptors in mouse striatum evidenced by behavioral and biochemical studies. Brain Res. 136, 31–337.

    Article  Google Scholar 

  • Matsuda L. A., Hanson G. R, and Gibb J. W. (1989) Neurochemical effects of amphetamine metabolites on central dopaminergic and serotonergic systems. J Pharmacol. Exp. Ther. 251, 901–908.

    PubMed  CAS  Google Scholar 

  • Mattingly B. A. and Rowlett J. K. (1989) Effect of repeated apomorphine and haloperidol treatments on subsequent behavioral sensitivity to apomorphine. Pharmacol. Biochem. Behav. 34, 345–347.

    Article  PubMed  CAS  Google Scholar 

  • Muller P. and Seeman P. (1979) Presynaptic subsensitivity as a possible basis for sensitization by long-term dopamine mimetics. Eur. J. Pharmacol. 55, 149–157.

    Article  PubMed  CAS  Google Scholar 

  • Nielsen E. B., Lyon M, and Ellison G. (1983) Apparent hallucinations in monkeys during around-the-clock amphetamine for seven to fourteen days: Possible relevance to amphetamine psychosis. J. Nerv. Med. Dis. 171, 222–233.

    Article  CAS  Google Scholar 

  • Norton S. (1968) On the discontinuous nature of behavior. J. Theor. Biol. 21, 229–243.

    Article  PubMed  CAS  Google Scholar 

  • Norton S. (1973) Amphetamine as a model for hyperactivity in the rat. Physiol. Behav. 11, 181–186.

    Article  PubMed  CAS  Google Scholar 

  • Parenti M., Flauto C., Parati E., Vescovi A., and Goppetti A. (1986) Differential effects of repeated treatment with L-dopa on dopamine D-l or D-2 receptors. NeuroPharmacology 25, 331–334.

    Article  PubMed  CAS  Google Scholar 

  • Peris J. and Zahniser N. R. (1989) Persistent augmented doparnine release after acute cocaine requires dopamine receptor activation. Pharmacol. Biochem. Behav. 32, 71–76.

    Article  PubMed  CAS  Google Scholar 

  • Rao T. S., Baker G. B., and Coutts R. T. (1986) Pentafluorobenzenesulfonyl chloride as a sensitive reagent for the rapid gas chromatographic analysis of tranylcypromine in tissues and body fluids. Biochem. Pharmacol. 35, 1925–1928.

    Article  PubMed  CAS  Google Scholar 

  • Rebec G. V. and Bashore T. R. (1984) Critical issues in assessing the behavioral effects of amphetamine. Neurosci. Biobehav. Rev. 8, 153–159.

    Article  PubMed  CAS  Google Scholar 

  • Riffee W. H. and Wilcox R. E. (1985) Effects of multiple pretreatment with apomorphine and amphetamine on amphetamine-induced locomotor activity and its inhibition by apomorphine. Psychopharmacology 85, 97–101.

    Article  PubMed  CAS  Google Scholar 

  • Rinne J. O., Rinne J. K., Laakso K, Lonnberg P., and Rinne U. K. (1985) Dopamine D-l receptors in the Parkinsonian brain. Brain Res. 359, 306–310.

    Article  PubMed  CAS  Google Scholar 

  • Robinson T. E. (1988) Stimulant drugs and stress: Factors influencing individual differences in the susceptibility to sensitization, in Sensitization of the Nervous System (Kalivas P. W. and Barnes C., eds.), Telford, Caldwell, NJ, pp. 145–173.

    Google Scholar 

  • Robinson T. E., and Becker J. B. (1986) Enduring changes in brain and behavior produced by chronic amphetamine administration: A review and evaluation of animal models of amphetamine psychosis. Brain Res. Rev. 11, 157–198.

    Article  CAS  Google Scholar 

  • Robinson T. E, Jurson P. A., Bennett J, A., and Bentgen K. M. (1988) Persistent sensitization of dopamine neurotransmission in ventral striatum (nucleus accumbens) produced by prior experience with (+)-amphetamine: A microdialysis study in freely moving rats. Brain Res. 462, 211–222.

    Article  PubMed  CAS  Google Scholar 

  • Robinson T. E., Yew J., Paulson P. E., and Camp D. M. (1990) The long-term effects of neurotoxic doses of methamphetamine on the extracellular concentration of dopamine measured with microdialysis in striatum. Neurosci. Lett. 110, 193–198.

    Article  PubMed  CAS  Google Scholar 

  • Ryan L. J., Martone M. E., Linder J. C., and Groves P. M. (1988) Cocaine, in contrast to D-amphetamine, does not cause axonal terminal degeneration in neostriatum and agranular frontal cortex of Long-Evans rats. Life Sci. 43, 1403–1409.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt C. J., Gehlert D. R, Peat M. A., Sonsalla P. K., Hanson G. R, Wamsley J. K., and Gibb J. W. (1985) Studies on the mechanism of tolerance to methamphetamine. Brain Res. 343, 305–313.

    Article  PubMed  CAS  Google Scholar 

  • Segal D. S. (1975) Behavioral and neurochemical correlates of repeated D-amphetamine administration. Adv. Biochem. Psycopharmacol. 15, 247–262.

    Google Scholar 

  • Segal D. S. and Schuckitt M. A. (1983) Animal models of stimulant-induced psychosis, in Stimulants: Neurochemical, Behavioral, and Clinical Perspectives (Creese I., ed.), Raven, New York, pp. 131–167.

    Google Scholar 

  • Seiden L. S. and Ricaurte G. A. (1987) Neurotoxicity of methamphetamine and related drugs, in Psychopharmacology: The Third Generation of Progress (Meltzer H. Y., ed.), Raven Press, New York, pp. 359–366.

    Google Scholar 

  • Seiden L. S. and Vosmer G. (1984) Formation of 6-hydroxydopamine in caudate nucleus of the rat brain after a single large dose of methyl-amphetamine. Pharmacal. Biohem. Behav. 21, 29–31.

    Article  CAS  Google Scholar 

  • Stewart J. and Vezina P. (1989) Microinjections of SCH-23390 into the ventral tegmental area and substantia nigra pars reticulata attenuate the development of sensitization to the locomotor activating effects of systemic amphetamine. Brain Res. 495, 401–406.

    Article  PubMed  CAS  Google Scholar 

  • Szechtman H., Eilam D., Teitelbaum P., and Golani I. (1988) A different look at measurement and interpretation of drug-induced stereotyped behavior. Psychobiology 16, 164–173.

    Google Scholar 

  • Trulson M. E. and Jacobs B. L. (1979) Long-term amphetamine treatment decreases brain serotonin metabolism: Implications for theories of schizophrenia. Science 205, 1295–1297.

    Article  PubMed  CAS  Google Scholar 

  • Vaccheri A., Dall’Olio R., Gandolfi O., Roncada P., and Montanaro N. (1987) Enhanced stereotyped response to apomorphine after chronic D-1 blockade with SCH 23390. Psychopharmacology 91, 394–396.

    Article  PubMed  CAS  Google Scholar 

  • Van Hoof J. A. R. A. M. (1982) Categories and sequences of behavior: Methods of description and analysis, in Handbook of Methods in Nonverbal Behavior Research (Scherer K. R. and Ekman P., eds.), Cambridge University Press, Cambrdge, UK, pp. 362–439.

    Google Scholar 

  • Wei-Dong L., Xiao-Da Z., and Guo-Zhang J. (1988) Enhanced stereotypic behavior by chronic treatment with bromocripdne accompanies increase of D-1 receptor binding. Life Sci. 42, 1841–1845.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 The Humana Press Inc.

About this protocol

Cite this protocol

Martin-Iverson, M.T. (1991). An Animal Model of Stimulant Psychoses. In: Boulton, A.A., Baker, G.B., Martin-Iverson, M.T. (eds) Animal Models in Psychiatry, I. Neuromethods, vol 18. Humana Press. https://doi.org/10.1385/0-89603-198-5:103

Download citation

  • DOI: https://doi.org/10.1385/0-89603-198-5:103

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-198-2

  • Online ISBN: 978-1-59259-623-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics