An Animal Model of Stimulant Psychoses

  • Mathew T. Martin-Iverson
Part of the Neuromethods book series (NM, volume 18)


The rationale for animal models of psychomotor stimulant-induced psychosis is both simple and complex. The simple rationale is that, since stimulants induce psychosis, an understanding of the neurochemical effects of stimulants will provide a similar knowledge of the neurochemical basis of psychosis. The most thorough way of determining the neurochemical effects of stimulants is by studying nonhuman animals. Close inspection of each element in this rationale reveals its true complexity.


Behavioral Sensitization Behavioral Transition Neurochemical Effect Psychomotor Stimulant Mouth Movement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. American Psychiatric Association (1987) Diagnostic and Statistical Mart of Mental Disorders (3rd ed, revised), Washington, DC.Google Scholar
  2. Angrist B. (1983) Psychoses induced by central nervous system stimulants and related drugs, in Stimulants: Neurochemical, Behavioral, and Clinical Perspectives (Creese, I., ed.), Raven, New York, pp. 130.Google Scholar
  3. Angrist B. and Gershon S. (1977) Clinical response to several dopamine agonists in schizophrenics and nonschizophrenic subjects (Costa E.and Gessa G. L., eds.), Raven Press, New York, pp. 677–680.Google Scholar
  4. Antelman S. M. and Chiodo L. A. (1981) Dopamine autoreceptor subsensitivity: A mechanism common to the treatment of depression and the induction of amphetamine psychosis. Biol. Psychiat. 16, 717–727.PubMedGoogle Scholar
  5. Baker G. B., Coutts R. T., and Rao T. S. (1987) Neuropharmacological and neurochemical properties of N-(2-cyanoethyl)-2-phenylethylamine,aprodrug of 2-phenylethylamine. Br. J. Pharmacol. 92, 243–255.PubMedGoogle Scholar
  6. Baudry M., Costentin J., Marcais H., Martres M. P., Protais P., and Schwartz J. C. (1977) Decreased responsiveness to low doses of apomorphine after dopamine agonists and the possible involvement of hyposensitivity of dopamine “autoreceptors.” Neurosci. Left. 4, 203–207.CrossRefGoogle Scholar
  7. Camp D. M. and Robinson T. E. (1988) Susceptibility to sensitization. I. Sex differences in the enduring effects of chronic D-amphetamine treatment on locomotion, stereotyped behavior and brain monoamines. Behav. Brain Res. 30, 55–68.PubMedCrossRefGoogle Scholar
  8. Connell P. H. (1958) Amphetamine psychosis. Maudsley Monograph No. 5. Chapman Hall, London.Google Scholar
  9. Conway P. G. and Uretsky N. J. (1982) Role of striatal dopaminergic receptors in amphetamine-induced behavioral facilitation. J. Pharmacol. Exp. Ther. 221, 650–655.PubMedGoogle Scholar
  10. Davis R. E., Sant W. W., and Ellison G. (1985) Continuous low-level apomorphine administration induces motor abnormalities and hallucino-gen-like behaviors. Psychopharmacology 85, 1–7.PubMedCrossRefGoogle Scholar
  11. Eichler A. J., Antelman S. M., and Black C. J. (1980) Amphetamine stereotypy is not a homogeneous phenomenon: sniffing and licking show distinct profiles of sensitization and tolerance. Psychopharmacology 68, 287–290.PubMedCrossRefGoogle Scholar
  12. Eison M. S., Eison A. S., and Iversen S. D. (1983) Two routes of continuous amphetamine administration induce different behavioral and neurochemical effects in the rat. Neurosci. Lett. 39, 313–319.PubMedCrossRefGoogle Scholar
  13. Ellison G. (1983) Phasic alterations in dopamine metabolites following continuous administration of amphetamine. Brain Res. 268, 387–389.PubMedCrossRefGoogle Scholar
  14. Ellison G. and Ratan R. (1982) The late stage following continuous amphetamine administration to rats is correlated with altered dopamine but not serotonin metabolism. Life Sci. 31, 771–777.PubMedCrossRefGoogle Scholar
  15. Fray P. J., Sahakian B. J., Robbins T. W, Koob G. F., and Iversen S. D. (1980) An observational method for quantifying the behavioral effects of dopamine agonists: Contrasting effects of d-amphetamine and apomorphine. Psychopharmacology 69, 253–259.PubMedCrossRefGoogle Scholar
  16. Gandolfi O., Dall’Olio R., Vaccheri A., Roncada P., and Montanaro N. (1988) Responses to selective D-l and D-2 agonists after repeated treatment with selective D-l and D-2 antagonists. Pharmacol. Biochem. Behav. 30, 463–469.PubMedCrossRefGoogle Scholar
  17. Gately P. F., Segal D. S., and Geyer M. A. (1987) Sequential changes in behavior induced by continuous infusions of amphetamine in rats. Psychopharmacology 91, 217–220.PubMedCrossRefGoogle Scholar
  18. Greenshaw A. J. (1986) Osmotic Mini-pumps: A convenient program for weight-adjusted filling concentrations. Brain Res. Bull. 16, 759–761.PubMedCrossRefGoogle Scholar
  19. Griffith J. D., Oates J., and Cavanaugh J. (1968) Paranoid episodes induced by a drug. J. Am. Med. Assoc. 205, 39.Google Scholar
  20. Haberman S. J. (1973) The analysis of residuals in cross-classified tables. Biometrics 29, 205–220.CrossRefGoogle Scholar
  21. Hanson G. R., Ritter J. K., Schmidt C. J., and Gibb J. W. (1986) Response of mesolimbic substance P to methamphetamine treatment. Eur. J. Pharmacol. 128, 265–268.PubMedCrossRefGoogle Scholar
  22. Hess E. J., Albers L. J., Le H., and Creese I. (1986) Effects of chronic SCH23390 treatment on the biochemical and behavioral properties of D2, and D2 dopamine receptors: Potentiated behavioral responses to a D2 dopamine agonist after selective D1 dopamine receptor upregulation. J.Pharmacol. Exp. Ther. 238, 846–854.PubMedGoogle Scholar
  23. Janowsky D. S. and Davis J. M. (1974) Dopamine, psychomotor stimulants,and schizophrenia: Effects of methylphenidate and the stereoisomers of amphetamine in schizophrenics, in Neuroysychoyharmacoloy of Monoamines Regulatory Enzymes (Usdin E., ed.), Raven, New York, pp. 317–323.Google Scholar
  24. Kuczenski R., Leith N. J., and Applegate C. D. (1983) Striatal dopamine metabolism in response to apomorphine: The effects of repeated amphetamine pretreatment. Brain Res. 258, 333–337.PubMedCrossRefGoogle Scholar
  25. Lieberman J. A., Kane J. M, and Alvir J. (1987) Provocative tests with psycho-stimulant drugs in schizophrenia. Psychopharmacology 91, 415–433.PubMedCrossRefGoogle Scholar
  26. Lyon M, and Robbins T. W. (1975) The action of central nervous system stimulant drugs: A general theory concerning amphetamine effects, in Current Developments in Psycholpharmacology, vol. 2 (Essman W. and Valzelli L., eds.), Spectrum, New York, pp. 79–163.Google Scholar
  27. Martin-Iverson M. T. and Iversen S. D. (1989) Day and night locomotor activity effects during administration of (+)-amphetamine. Pharmacol. Biochem Behav. 34, 465–471.PubMedCrossRefGoogle Scholar
  28. Martin-Iverson M. T. and McManus D. J. Stimulant-conditioned locomotion is not affected by blockade of Dl and/or D2 dopamine receptors during conditioning. Brain Res. 521, 175–184.Google Scholar
  29. Martin-Iverson M. T., Coutts R. T., and Baker G. B. (1989) Behavioral effects of (+)-amphetamine and a side-chain fluorinated (+)-amphetamine. J. Neurochem. 52 (Suppl), S200D.Google Scholar
  30. Martin-Iverson M. T., Iversen S. D., and Stahl S. M. (1988a) Long-term motor stimulant effects of (+)-4-propyl-9-hydroxynaphthoxazine (PHNO), a dopamine D-2 receptor agonist: Interactions with a doparnine D-1 receptor antagonist and agonist. Eur. J Pharmacol. 149, 25–31.PubMedCrossRefGoogle Scholar
  31. Martin-Iverson M. T., Leclere J, P., and Fibiger H. C. (1983) Cholinergic-dopaminergic interactions and the mechanisms of action of antidepressants. Eur. J. Pharmacol. 94, 19–201.CrossRefGoogle Scholar
  32. Martin-Iverson M. T., Stahl S. M., and Iversen S. D. (1987) Factors determining the behavioural consequences of continuous treatment with 4-propyl-9-hydroxynaphthoxazine, a selective dopamine D2 agonist, in Parkinson’s Disease: Clinical and Experimental Advances (Rose F. C, ed.), John Libbey, London, pp. 169–177.Google Scholar
  33. Martin-Iverson M. T., Stahl S.M., and Iversen S.D. (1988b) Chronic administration of a selective dopamine D-2 agonist: Factors determining behavioral tolerance and sensitization. Psychopharmacology 95, 534–539.PubMedCrossRefGoogle Scholar
  34. Martres M. P., Costentin J., Baudry M., Marcais H., Protais P., and Schwartz J. C. (1977) Long-term changes in the sensitivity of pre-and postsynaptic dopamine receptors in mouse striatum evidenced by behavioral and biochemical studies. Brain Res. 136, 31–337.CrossRefGoogle Scholar
  35. Matsuda L. A., Hanson G. R, and Gibb J. W. (1989) Neurochemical effects of amphetamine metabolites on central dopaminergic and serotonergic systems. J Pharmacol. Exp. Ther. 251, 901–908.PubMedGoogle Scholar
  36. Mattingly B. A. and Rowlett J. K. (1989) Effect of repeated apomorphine and haloperidol treatments on subsequent behavioral sensitivity to apomorphine. Pharmacol. Biochem. Behav. 34, 345–347.PubMedCrossRefGoogle Scholar
  37. Muller P. and Seeman P. (1979) Presynaptic subsensitivity as a possible basis for sensitization by long-term dopamine mimetics. Eur. J. Pharmacol. 55, 149–157.PubMedCrossRefGoogle Scholar
  38. Nielsen E. B., Lyon M, and Ellison G. (1983) Apparent hallucinations in monkeys during around-the-clock amphetamine for seven to fourteen days: Possible relevance to amphetamine psychosis. J. Nerv. Med. Dis. 171, 222–233.CrossRefGoogle Scholar
  39. Norton S. (1968) On the discontinuous nature of behavior. J. Theor. Biol. 21, 229–243.PubMedCrossRefGoogle Scholar
  40. Norton S. (1973) Amphetamine as a model for hyperactivity in the rat. Physiol. Behav. 11, 181–186.PubMedCrossRefGoogle Scholar
  41. Parenti M., Flauto C., Parati E., Vescovi A., and Goppetti A. (1986) Differential effects of repeated treatment with L-dopa on dopamine D-l or D-2 receptors. NeuroPharmacology 25, 331–334.PubMedCrossRefGoogle Scholar
  42. Peris J. and Zahniser N. R. (1989) Persistent augmented doparnine release after acute cocaine requires dopamine receptor activation. Pharmacol. Biochem. Behav. 32, 71–76.PubMedCrossRefGoogle Scholar
  43. Rao T. S., Baker G. B., and Coutts R. T. (1986) Pentafluorobenzenesulfonyl chloride as a sensitive reagent for the rapid gas chromatographic analysis of tranylcypromine in tissues and body fluids. Biochem. Pharmacol. 35, 1925–1928.PubMedCrossRefGoogle Scholar
  44. Rebec G. V. and Bashore T. R. (1984) Critical issues in assessing the behavioral effects of amphetamine. Neurosci. Biobehav. Rev. 8, 153–159.PubMedCrossRefGoogle Scholar
  45. Riffee W. H. and Wilcox R. E. (1985) Effects of multiple pretreatment with apomorphine and amphetamine on amphetamine-induced locomotor activity and its inhibition by apomorphine. Psychopharmacology 85, 97–101.PubMedCrossRefGoogle Scholar
  46. Rinne J. O., Rinne J. K., Laakso K, Lonnberg P., and Rinne U. K. (1985) Dopamine D-l receptors in the Parkinsonian brain. Brain Res. 359, 306–310.PubMedCrossRefGoogle Scholar
  47. Robinson T. E. (1988) Stimulant drugs and stress: Factors influencing individual differences in the susceptibility to sensitization, in Sensitization of the Nervous System (Kalivas P. W. and Barnes C., eds.), Telford, Caldwell, NJ, pp. 145–173.Google Scholar
  48. Robinson T. E., and Becker J. B. (1986) Enduring changes in brain and behavior produced by chronic amphetamine administration: A review and evaluation of animal models of amphetamine psychosis. Brain Res. Rev. 11, 157–198.CrossRefGoogle Scholar
  49. Robinson T. E, Jurson P. A., Bennett J, A., and Bentgen K. M. (1988) Persistent sensitization of dopamine neurotransmission in ventral striatum (nucleus accumbens) produced by prior experience with (+)-amphetamine: A microdialysis study in freely moving rats. Brain Res. 462, 211–222.PubMedCrossRefGoogle Scholar
  50. Robinson T. E., Yew J., Paulson P. E., and Camp D. M. (1990) The long-term effects of neurotoxic doses of methamphetamine on the extracellular concentration of dopamine measured with microdialysis in striatum. Neurosci. Lett. 110, 193–198.PubMedCrossRefGoogle Scholar
  51. Ryan L. J., Martone M. E., Linder J. C., and Groves P. M. (1988) Cocaine, in contrast to D-amphetamine, does not cause axonal terminal degeneration in neostriatum and agranular frontal cortex of Long-Evans rats. Life Sci. 43, 1403–1409.PubMedCrossRefGoogle Scholar
  52. Schmidt C. J., Gehlert D. R, Peat M. A., Sonsalla P. K., Hanson G. R, Wamsley J. K., and Gibb J. W. (1985) Studies on the mechanism of tolerance to methamphetamine. Brain Res. 343, 305–313.PubMedCrossRefGoogle Scholar
  53. Segal D. S. (1975) Behavioral and neurochemical correlates of repeated D-amphetamine administration. Adv. Biochem. Psycopharmacol. 15, 247–262.Google Scholar
  54. Segal D. S. and Schuckitt M. A. (1983) Animal models of stimulant-induced psychosis, in Stimulants: Neurochemical, Behavioral, and Clinical Perspectives (Creese I., ed.), Raven, New York, pp. 131–167.Google Scholar
  55. Seiden L. S. and Ricaurte G. A. (1987) Neurotoxicity of methamphetamine and related drugs, in Psychopharmacology: The Third Generation of Progress (Meltzer H. Y., ed.), Raven Press, New York, pp. 359–366.Google Scholar
  56. Seiden L. S. and Vosmer G. (1984) Formation of 6-hydroxydopamine in caudate nucleus of the rat brain after a single large dose of methyl-amphetamine. Pharmacal. Biohem. Behav. 21, 29–31.CrossRefGoogle Scholar
  57. Stewart J. and Vezina P. (1989) Microinjections of SCH-23390 into the ventral tegmental area and substantia nigra pars reticulata attenuate the development of sensitization to the locomotor activating effects of systemic amphetamine. Brain Res. 495, 401–406.PubMedCrossRefGoogle Scholar
  58. Szechtman H., Eilam D., Teitelbaum P., and Golani I. (1988) A different look at measurement and interpretation of drug-induced stereotyped behavior. Psychobiology 16, 164–173.Google Scholar
  59. Trulson M. E. and Jacobs B. L. (1979) Long-term amphetamine treatment decreases brain serotonin metabolism: Implications for theories of schizophrenia. Science 205, 1295–1297.PubMedCrossRefGoogle Scholar
  60. Vaccheri A., Dall’Olio R., Gandolfi O., Roncada P., and Montanaro N. (1987) Enhanced stereotyped response to apomorphine after chronic D-1 blockade with SCH 23390. Psychopharmacology 91, 394–396.PubMedCrossRefGoogle Scholar
  61. Van Hoof J. A. R. A. M. (1982) Categories and sequences of behavior: Methods of description and analysis, in Handbook of Methods in Nonverbal Behavior Research (Scherer K. R. and Ekman P., eds.), Cambridge University Press, Cambrdge, UK, pp. 362–439.Google Scholar
  62. Wei-Dong L., Xiao-Da Z., and Guo-Zhang J. (1988) Enhanced stereotypic behavior by chronic treatment with bromocripdne accompanies increase of D-1 receptor binding. Life Sci. 42, 1841–1845.CrossRefGoogle Scholar

Copyright information

© The Humana Press Inc. 1991

Authors and Affiliations

  • Mathew T. Martin-Iverson
    • 1
  1. 1.Department of PsychiatryUniversity of AlbertaEdmontonCanada

Personalised recommendations