Skip to main content

Coupling of Monoclonal Antibodies with Fluorophores

  • Protocol
Monoclonal Antibody Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 45))

Abstract

Immunofluorescence analysis has been greatly aided by the use of monoclonal antibodies (MAbs) modified by derivatization with fluorescent labels (1). Improvements of known fluorophores and development of new ones with a broader range of colors have paralleled the production of new detection systems with enhanced sensitivity, offering an increasingly more convenient alternative to radioactive probes (28). When compared with radioisotopes, fluorescent dyes have the advantages of generally lower cost, ease of disposal, similar sensitivity, and the feasibility of multicolor labeling. The ability to use several colors (even five or more) allows one to identify multiple-cell subsets, or multiple structures or functions within a cell in the same experimental preparation (9). Progress in the production of MAbs and effective antigens obtained by conjugating small molecules, such as drugs and toxins, to proper carriers has enormously enhanced the prospects of using antibodies not only for diagnosing diseases, but also for detecting toxins or pesticides in foods and in the environment (10).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goding, J. W. (1983) Immunofluorescence, in Monoclonal Antibodies: Principle and Practice (ed.), Academic, New York, pp. 208–243.

    Google Scholar 

  2. Haugland, R. P. (1990) Fluorescein substitutes for microscopy and imaging, in Optical Microscopy for Biology (Herman, B. and Jacobson, K., eds.), Wiley and Liss, New York, pp. 143–157.

    Google Scholar 

  3. Haugland, R. P. (1991) Fluorescent labels, in Biosensors with Fiber Optics (Wingard, L. B., Jr. and Wise, D. L., eds.), Humana, Clifton, NJ, pp. 85–110.

    Google Scholar 

  4. Whitaker, J. E., Haugland, R. P., Moore, P. L., Hewitt, P. C., Reese, M., and Haugland, R. P. (1991) Cascade Blue derivatives: water soluble, reactive, blue emission dyes evaluated as fluorescent labels and tracers. Analyt Biochem. 198, 119–130.

    Article  PubMed  CAS  Google Scholar 

  5. Haugland, R. P. (1992) Introduction to reactive probes, in Handbook of Fluorescent Probes and Research Chemicals (Larison, K., ed.), Molecular Probes, Inc., Eugene, OR, pp. 5–8.

    Google Scholar 

  6. Brinkley, J. M. (1992) A brief survey of methods for preparing protein conjugates with dyes, haptens, and cross-linking reagents. Bioconjugate Chem. 3, 2–13.

    Article  CAS  Google Scholar 

  7. Khalfan, H., Abuknesha, R., Rand-Weaver, M., Price, R. G., and Robinson, D. (1986) Aminomethyl coumarin acetic acid: a new fluorescent labeling agent for proteins. Histochem. J. 18, 497–499.

    Article  PubMed  CAS  Google Scholar 

  8. Truneh, A. and Machy, P. (1987) Detection of very low receptor numbers on cells by flow cytometry using sensitive staining methods. Cytometry 8, 562–567.

    Article  PubMed  CAS  Google Scholar 

  9. DeBiasio, R., Bright, G. R., Ernst, L. A., Waggoner, A. S., and Taylor, D. L. (1987) Five-parameter fluorescence imaging: wound healing of living Swiss 3T3 cells. J. Cell Biol. 105, 1613–1623.

    Article  PubMed  CAS  Google Scholar 

  10. Catsinpoolas, N. (1979) Immunological aspects of foods and food safety, in Nutritional and Safety Aspects of Food Processing (Tannenbaum, S. R., ed.), Marcel Dekker, New York, pp. 404–405.

    Google Scholar 

  11. Wong, S. S. (1991) Reactive groups of proteins and their modifying agents, in Chemistry of Protein Conjugation and Crosslinking, CRC, Boston, MA, pp. 8–27.

    Google Scholar 

  12. Langman, R. E. (1989) B cells and immunoglobulins, in The Immune System, Academic, San Diego, CA, pp. 61–71.

    Google Scholar 

  13. Lundblad, R. L. and Noyes, C. M. (1984) The modification of lysines, in Chemical Reagents for Protein Modification, vol. 1, CRC, Boston, MA, pp. 127–170.

    Google Scholar 

  14. Haugland, R. P. (1992) Isothiocyanates, in Handbook of Fluorescent Probes and Research Chemicals (Larison, K., ed.), Molecular Probes, Inc., Eugene, OR, pp. 20–23.

    Google Scholar 

  15. Wong, S. S. (1991) Reactive groups of proteins and their modifying agents, in Chemistry of Protein Conjugation and Crosslinking, CRC, Boston, MA, pp. 37–39.

    Google Scholar 

  16. Haugland, R. P. (1992) Succinimidyl esters and carboxylic acids, in Handbook of Fluorescent Probes and Research Chemicals (Larison, K., ed.), Molecular Probes, Inc., Eugene, OR, pp. 24–32.

    Google Scholar 

  17. Haugland, R. P. (1992) Sulfonyl chlorides, in Handbook of Fluorescent Probes and Research Chemicals (Larison, K., ed.), Molecular Probes, Inc., Eugene, OR, pp. 33–35.

    Google Scholar 

  18. Hong, R. and Nisonoff, A. (1965) Relative labilities of two types of interchain disulfide bond of rabbit γG-immunoglobulin. J. Biol. Chem. 240, 3883–3891.

    PubMed  CAS  Google Scholar 

  19. Packard, B. and Edidin, M. (1986) Site directed labeling of a monoclonal antibody targeting to a disulfide bond. Biochemistry 25, 3548–3552.

    Article  PubMed  CAS  Google Scholar 

  20. Mage, M. G. and Harrison, E. T. (1966) A comparison of the labile disulfide bonds of rabbit γG-immunoglobulin fragments. Arch. Biochem. Biophys. 113, 709–717.

    Article  PubMed  CAS  Google Scholar 

  21. Haugland, R. P. (1992) Haloacetyl derivatives, in Handbook of Fluorescent Probes and Research Chemicals (Larison, K., ed.), Molecular Probes, Inc., Eugene, OR, pp. 9–16.

    Google Scholar 

  22. Holowka, D. and Baird, B. (1983) Structural studies on the membrane-bound immunoglobulin E-receptor Complex. 2. Mapping of distances between sites on IgE and the membrane surface. Biochemistry 22, 3475–3484.

    Article  CAS  Google Scholar 

  23. Leudtke, R., Owen, C., Vanderkooi, J., and Karush, F. (1981) Proximity relationships within the Fc segment of rabbit immunoglobulins G analyzed by resonance energy transfer. Biochemistry 20, 2927–2936.

    Article  Google Scholar 

  24. Baird, B. and Holowka, D. (1985) Structural mapping of Fc receptor bound immunoglobulin E: proximity to the membrane surface of the antibody combining site and another site in the fab segments. Biochemistry 24, 6252–6259.

    Article  PubMed  CAS  Google Scholar 

  25. O’Shannessy, D. J. and Quarle, S. (1987) Labeling of the oligosaccharide moieties of immunoglobulins. J. Immunol. Methods 99, 153–161.

    Article  CAS  Google Scholar 

  26. Fisch, I., Künzi, G., Rose, K., and Offord, R. (1992) Site-specific modification of a fragment of a chimeric monoclonal antibody using reverse proteolysis. Bioconj. Chem. 3, 147–153.

    Article  CAS  Google Scholar 

  27. Oi, V. T., Glazer, A. N., and Stryer, L. (1982) Fluorescent phycobiliprotein conjugates for analyses of cells and molecules. J. Cell Biol. 93, 981–986.

    Article  PubMed  CAS  Google Scholar 

  28. Kronick, M. N. (1986) The use of phycobiliproteins as fluorescent labels in immunoassay. J. Immunol. Methods 92, 1–13.

    Article  PubMed  CAS  Google Scholar 

  29. Glazer, A. N. (1985) Light harvesting by phycobilisomes. Annu. Rev. Biophys. Biophys. Chem. 14, 47–77.

    Article  PubMed  CAS  Google Scholar 

  30. Jung, T. M. amd Dailey, M. O. (1989) A novel and inexpensive source of allophycocyanin for multicolor flow cytometry. J. Immunol. Methods 121, 9–18.

    Article  PubMed  CAS  Google Scholar 

  31. Kronick, M. N. and Grossman, P. D. (1983) Immunoassay techniques with fluorescent phycobiliprotein conjugates. Clin. Chem. 29, 1582–1586.

    PubMed  CAS  Google Scholar 

  32. Hadam, M. R. (1985) Flow cytometry and surface-marker phenotyping using monoclonal antibodies: a combined approach to precisely define the state of the immune system, in New Aspects in Physiological Antitumor Substances, Karger, Basel, Switzerland, pp. 120–146.

    Google Scholar 

  33. Hardy, R. R., Hayakawa, K., Parks, D. R., and Herzenberg, L. A. (1983) Demonstration of B-cell maturation in X-linked immunodeficient mice by simultaneous three-color immunofluorescence. Nature 306, 270–272.

    Article  PubMed  CAS  Google Scholar 

  34. Parks, D. R., Hardy, R. R., and Herzenberg, L. A. (1984) Three-color immunofluorescence analysis of mouse B lymphocyte subpopulations. Cytometry 5, 159–166.

    Article  PubMed  CAS  Google Scholar 

  35. Boyle, R. R. (1966) The reaction of dimethyl sulfoxide and 5-dimethylaminonaphthalene-1-sulfonylchloride. J. Org. Chem. 31, 3880–3882.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Humana Press Inc.

About this protocol

Cite this protocol

Haugland, R.P. (1995). Coupling of Monoclonal Antibodies with Fluorophores. In: Davis, W.C. (eds) Monoclonal Antibody Protocols. Methods in Molecular Biology™, vol 45. Humana Press. https://doi.org/10.1385/0-89603-308-2:205

Download citation

  • DOI: https://doi.org/10.1385/0-89603-308-2:205

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-308-5

  • Online ISBN: 978-1-59259-532-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics