Skip to main content

Part of the book series: Springer Protocols Handbooks ((SPH))

FISH, which allows the mapping of DNA sequences directly onto chromosomes, has revolutionized plant molecular cytogenetics research since it was first adapted from mammalian research. Repetitive DNA sequences can generate unique FISH patterns on individual chromosomes for karyotyping (chromosome identification) and phylogenetic/evolution analyses. FISH and/or genomic in situ hybridization (GISH) on meiotic metaphase chromosomes provide more information on chromosome pairing than traditional pairing analysis. FISH on meiotic pachytene chromosomes coupled with digital imaging systems has become an efficient method for developing physical maps in plant species, especially those with small genomes. FISH-based physical mapping provides a valuable complementary approach to genome sequencing and map-based cloning research, and it will continue to play an important role in relating DNA sequence information to chromosome biology. In addition, FISH using RNA probes and FISH with immunoassays are becoming increasingly important techniques in studies of chromosome structure and functions that control gene expression and regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bass HW, Marshall WF, Sedat JW, Agard DA, Cande WZ (1997) Telomeres cluster de novo before the initiation of synapsis: a three-dimensional spatial analysis of telomere positions before and during meiotic prophase. J Cell Biol 137:5–18

    Article  CAS  PubMed  Google Scholar 

  • Feng Q, Zhang YJ, Hao P, Wang SY, Fu G, Huang YC, et al. (2002) Sequence and analysis of rice chromosome 4. Nature 420:316–320

    Article  CAS  PubMed  Google Scholar 

  • Fransz PF, Alonso-Blanco C, Liharska TB, Peeters AJM, Zabel P, de Jong JH (1996a) High-resolution physical mapping inArabidopsis thaliana and tomato by fluorescence in situ hybridization to extended DNA fibres. Plant J 9:421–430

    Article  CAS  Google Scholar 

  • Fransz PF, Stam M, Montijn B, Hoopen RT, Weigant J, Kooter JM, Oud O, Nanninga N (1996b) Detection of single-copy genes and chromosome rearrangements in Petunia hybrida by fluorescence in situ hybridisation. Plant J 9:767–774

    Article  CAS  Google Scholar 

  • Friebe B, Kynast RG, Zhang P, Qi L, Dhar M, Gill BS (2001) Chromosome healing by addition of telomeric repeats in wheat occurs during the first mitotic divisions of the sporophyte and is a gradual process. Chromosome Res 9:137–146

    Article  CAS  PubMed  Google Scholar 

  • Heslop-Harrison JS, Leitch AR, Schwarzacher T, Anamthawat-Jonsson K (1990) Detection and characterization of 1B/1R translocations in hexaploid wheat. Heredity 65:385–392

    Article  Google Scholar 

  • Jackson SA, Wang M, Goodman H, Jiang J (1998) Fiber-FISH analysis of repetitive DNA elements in Arabidopsis thaliana. Genome 41:566–572

    Article  CAS  PubMed  Google Scholar 

  • Jackson SA, Cheng Z, Wang M-L, Goodman HM, Jiang J (2000) Comparative FISH mapping of a 431-kb Arabidopsis thaliana BAC contig reveals the role of chromosomal duplications in the expansion of the Brassica rapa genome. Genetics 156:833–838

    CAS  PubMed  Google Scholar 

  • Jackson SA, Zhang P, Chen WP, Phillips RL, Friebe B, Muthukrishnan S, Gill BS (2001) High-resolution structural analysis of biolistic transgene integration into the nuclear genome of wheat. Theor Appl Genet 103:56–62

    Article  CAS  Google Scholar 

  • Le HT, Armstrong KC, Miki B (1989) Detection of rye DNA in wheat-rye hybrids and wheat translocation stocks using total genomic DNA as a probe. Plant Mol Biol Rep 7:150–158

    Article  Google Scholar 

  • Leitch IJ, Heslop-Harrison JS (1992) Physical mapping of the 18S-5.8S-26S rRNA genes in barley by in situ hybridization. Genome 35:1013–1018

    CAS  Google Scholar 

  • Leitch IJ, Heslop-Harrison JS (1993) Physical mapping of four sites of 5S rDNA sequences and one site of the alpha-amylase-2 gene in barley (Hordeum vulgare). Genome 36:517–523

    Article  CAS  PubMed  Google Scholar 

  • Leitch IJ, Leitch AR, Heslop-Harrison JS (1991) Physical mapping of plant DNA sequences by simultaneous in situ hybridization of two differently fluorescent probes. Genome 34:329–333

    Google Scholar 

  • Leitch AR, Schwarzacher T, Jackson D, Leitch IJ (1994) In situ hybridization: a practical guide. BIOS Scientific, Oxford, UK

    Google Scholar 

  • Lysak MA, Fransz PF, Ali HBM, Schubert I (2001) Chromosome painting in Arabidopsis thaliana. Plant J 28:689–697

    Article  CAS  PubMed  Google Scholar 

  • Mukai Y, Nakahara Y, Yamamoto M (1993) Simultaneous discrimination of the three genomes in hexaploid wheat by multicolor fluorescence in situ hybridization using total genomic and highly repeated DNA probes. Genome 36:489–494

    Article  CAS  PubMed  Google Scholar 

  • Parra I, Windle B (1993) High resolution visual mapping of stretched DNA by fluorescent hybridisation. Nature Genet 5:17–21

    Article  CAS  PubMed  Google Scholar 

  • Rigby PWJ, Dieckmann M, Rhodes C, Berg P (1977) Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J Mol Biol 113:237–251

    Article  CAS  PubMed  Google Scholar 

  • Sasaki T, Matsumoto T, Yamamoto K, Sakata K, Baba T, Katayose Y, et al. (2002) The genome sequence and structure of rice chromosome 1. Nature (London) 420:312–316

    Article  CAS  Google Scholar 

  • Schubert I, Fransz PF, Fuchs J, de Jong JH (2001) Chromosome painting in plants. Methods Cell Sci 23:57–69

    Article  CAS  PubMed  Google Scholar 

  • Schwarzacher T, Leitch AR, Bennett MD, Heslop-Harrison JS (1989) In situ localization of parental genomes in a wide hybrid. Ann Bot 64:315–324

    Google Scholar 

  • Walling JG, Pires JC, Jackson SA (2005) Preparation of samples for comparative studies of plant chromosomes using in situ hybridization methods. Methods Enzymol 395:443–460

    Article  CAS  PubMed  Google Scholar 

  • Wiegant J, Ried T, Nederlof PM, van der Ploeg M, Tanke HJ, Rapp AK (1991) In situ hybridization with fluoresceinated DNA. Nucleic Acids Res 19:3237–3241

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Friebe B, Lukaszewski AJ, Gill BS (2001) The centromere structure in Robertsonian wheat-rye translocation chromosomes indicates that centric breakage-fusion can occur at different positions within the primary constriction. Chromosoma 110:335–344

    Article  CAS  PubMed  Google Scholar 

  • Zhong X-B, Fransz PF, Wennekes-van Eden J, Zabel P, van Kammen A, de Jong JH (1996) High-resolution mapping on pachytene chromosomes and extended DNA fibres by fluorescence in-situ hybridization. Plant Mol Biol Rep 14:232–242

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Friebe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Zhang, P., Friebe, B. (2009). FISH on Plant Chromosomes. In: Liehr, T. (eds) Fluorescence In Situ Hybridization (FISH) — Application Guide. Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70581-9_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70581-9_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70580-2

  • Online ISBN: 978-3-540-70581-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics