Advertisement

Integrating Molecular Biomarkers into Current Clinical Management in Melanoma

  • Ragini Kudchadkar
  • Geoffrey Gibney
  • Vernon K. Sondak
Part of the Methods in Molecular Biology book series (MIMB, volume 1102)

Abstract

Personalized melanoma medicine has progressed from histopathologic features to serum markers to molecular profiles. Since the identification of activating BRAF mutations and subsequent development of drugs targeting the mutant BRAF protein, oncologists now need to incorporate prognostic and predictive biomarkers into treatment decisions for their melanoma patients. Examples include subgrouping patients by genotype profiles for targeted therapy and the development of serologic, immunohistochemical, and genotype profiles for the selection of patients for immunotherapies. In this chapter, we provide an overview of the current status of BRAF mutation testing, as well as promising serologic and molecular profiles that will impact patient care. As further research helps clarify the roles of these factors, the clinical outcomes of melanoma patients promise to be greatly improved.

Key words

Melanoma Biomarkers Targeted therapy 

References

  1. 1.
    Clark WH Jr, From L, Bernadino EA et al (1969) The histogenesis and biologic behavior of primary human malignant melanomas of the skin. Cancer Res 29:705–727PubMedGoogle Scholar
  2. 2.
    Breslow A (1970) Thickness, cross-sectional area and depth of invasion in the prognosis of cutaneous melanoma. Ann Surg 172:902–908CrossRefPubMedGoogle Scholar
  3. 3.
    Balch CM, Murad TM, Soong S-J et al (1978) A multifactorial analysis of melanoma: prognostic histopathological features comparing Clark’s and Breslow’s staging methods. Ann Surg 188:732–742CrossRefPubMedGoogle Scholar
  4. 4.
    Morton DL, Wen DR, Wong JH et al (1992) Technical details of intraoperative lymphatic mapping for early stage melanoma. Arch Surg 127:392–399CrossRefPubMedGoogle Scholar
  5. 5.
    Morton DL, Thompson JF, Cochran AJ et al (2006) Sentinel-node biopsy or nodal observation in melanoma. N Engl J Med 355:1307–1317CrossRefPubMedGoogle Scholar
  6. 6.
    Azzola MF, Shaw HM, Thompson JF et al (2003) Tumor mitotic rate is a more powerful prognostic indicator than ulceration in patients with primary cutaneous melanoma: an analysis of 3661 patients from a single center. Cancer 97:1488–1498CrossRefPubMedGoogle Scholar
  7. 7.
    Sondak VK, Taylor JM, Sabel MS et al (2004) Mitotic rate and younger age are predictors of sentinel lymph node positivity: lessons learned from the generation of a probabilistic model. Ann Surg Oncol 11:247–258CrossRefPubMedGoogle Scholar
  8. 8.
    Thompson JF, Soong S-J, Balch CM et al (2011) Prognostic significance of mitotic rate in localized primary cutaneous melanoma: an analysis of patients in the multi-institutional American Joint Committee on Cancer melanoma staging database. J Clin Oncol 29:2137–2141CrossRefGoogle Scholar
  9. 9.
    Casper DJ, Ross KI, Messina JL et al (2010) Use of anti-phosphohistone H3 immunohistochemistry to determine mitotic rate in thin melanoma. Am J Dermatopathol 32:650–654CrossRefPubMedGoogle Scholar
  10. 10.
    Schimming TT, Grabellus F, Roner M et al (2012) pHH3 immunostaining improves interobserver agreement of mitotic index in thin melanomas. Am J Dermatopathol 34:266–269CrossRefPubMedGoogle Scholar
  11. 11.
    Ladstein RG, Bachmann IM, Straume O et al (2012) Prognostic importance of the mitotic marker phosphohistone H3 in cutaneous nodular melanoma. J Invest Dermatol 132:1247–1252CrossRefPubMedGoogle Scholar
  12. 12.
    Clemente CG, Mihm MC Jr, Bufalino R et al (1996) Prognostic value of tumor infiltrating lymphocytes in the vertical growth phase of primary cutaneous melanoma. Cancer 77:1303–1310CrossRefPubMedGoogle Scholar
  13. 13.
    Tuthill RJ, Unger JM, Liu PY et al (2002) Risk assessment in localized primary cutaneous melanoma: a Southwest Oncology Group study evaluating nine factors and a test of the Clark logistic regression prediction model. Am J Clin Pathol 118:504–511CrossRefPubMedGoogle Scholar
  14. 14.
    Zedek DC, McCalmont TH (2011) Spitz nevi, atypical spitzoid neoplasms, and spitzoid melanoma. Clin Lab Med 31:311–320CrossRefPubMedGoogle Scholar
  15. 15.
    Zembowicz A, Yang SE, Kafanas A et al (2012) Correlation between histologic assessment and fluorescence in situ hybridization using MelanoSITE in evaluation of histologically ambiguous melanocytic lesions. Arch Pathol Lab Med 136:1571–1579CrossRefPubMedGoogle Scholar
  16. 16.
    Zimmermann AK, Hirschmann A, Pfeiffer D et al (2010) FISH analysis for diagnostic evaluation of challenging melanocytic lesions. Histol Histopathol 25:1139–1147PubMedGoogle Scholar
  17. 17.
    Moore SR, Persons DL, Sosman JA et al (2008) Detection of copy number alterations in metastatic melanoma by a DNA fluorescence in situ hybridization probe panel and array comparative genomic hybridization: a Southwest Oncology Group study (S9431). Clin Cancer Res 14:2927–2935CrossRefPubMedGoogle Scholar
  18. 18.
    Scolyer RA, Murali R, McCarthy SW et al (2010) Histologically ambiguous (“borderline”) primary cutaneous melanocytic tumors: approaches to patient management including the roles of molecular testing and sentinel lymph node biopsy. Arch Pathol Lab Med 134:1770–1777PubMedGoogle Scholar
  19. 19.
    Ali L, Helm T, Cheney R et al (2010) Correlating array comparative genomic hybridization findings with histology and outcome in spitzoid melanocytic neoplasms. Int J Clin Exp Pathol 3:593–599PubMedGoogle Scholar
  20. 20.
    de Waal AC, Aben KK, van Rossum MM et al (2012) Melanoma of unknown primary origin: a population-based study in the Netherlands. Eur J Cancer 49:676–683CrossRefPubMedGoogle Scholar
  21. 21.
    Lyle PL, Amato CM, Fitzpatrick JE et al (2008) Gastrointestinal melanoma or clear cell sarcoma? Molecular evaluation of 7 cases previously diagnosed as malignant melanoma. Am J Surg Pathol 32:858–866CrossRefPubMedGoogle Scholar
  22. 22.
    Yang L, Chen Y, Cui T et al (2012) Identification of biomarkers to distinguish clear cell sarcoma from malignant melanoma. Hum Pathol 43:1463–1470CrossRefPubMedGoogle Scholar
  23. 23.
    Dutton-Regester K, Kakavand H, Aoude L et al (2013) Melanomas of unknown primary have a mutational profile consistent with cutaneous sun exposed melanoma. Pigment Cell Melanoma Res 26:852–860CrossRefPubMedGoogle Scholar
  24. 24.
    Davies H, Bignell GR, Cox C et al (2002) Mutations of the BRAF gene in human cancer. Nature 417:949–954CrossRefPubMedGoogle Scholar
  25. 25.
    Curtin JA, Fridlyand J, Kageshita T et al (2005) Distinct sets of genetic alterations in melanoma. N Engl J Med 353:2135–2147CrossRefPubMedGoogle Scholar
  26. 26.
    Chapman PB, Hauschild A, Robert C et al (2011) Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 364:2507–2516CrossRefPubMedGoogle Scholar
  27. 27.
    Hauschild A, Grob JJ, Demidov LV et al (2012) Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet 380:358–365CrossRefPubMedGoogle Scholar
  28. 28.
    Flaherty KT, Robert C, Heresy P et al (2012) Improved survival with MEK inhibition in BRAF-mutated melanoma. N Engl J Med 372:107–114CrossRefGoogle Scholar
  29. 29.
    Long GV, Menzies AM, Nagrial AM et al (2011) Prognostic and clinicopathologic associations of oncogenic BRAF in metastatic melanoma. J Clin Oncol 29:1239–1246CrossRefPubMedGoogle Scholar
  30. 30.
    Menzies AM, Haydu LE, Visintin L et al (2012) Distinguishing clinicopathologic features of patients with V600E and V600K BRAF-mutant metastatic melanoma. Clin Cancer Res 18:3242–3249CrossRefPubMedGoogle Scholar
  31. 31.
    Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74:5463–5467CrossRefPubMedGoogle Scholar
  32. 32.
    Hert DG, Fredlake CP, Barron AE (2008) Advantages and limitations of next-generation sequencing technologies: a comparison of electrophoresis and non-electrophoresis methods. Electorphoresis 29:4618–4626CrossRefGoogle Scholar
  33. 33.
    Anderson S, Bloom KJ, Vallera DU et al (2012) Multisite analytic performance studies of a real-time polymerase chain reaction assay for the detection of BRAF V600E mutations in formalin-fixed, paraffin-embedded tissue specimens of malignant melanoma. Arch Pathol Lab Med 136:1385–1391CrossRefPubMedGoogle Scholar
  34. 34.
    Halait H, Demartin K, Shah S et al (2012) Analytical performance of a real-time PCR-based assay for V600 mutations in the BRAF gene, used as the companion diagnostic test for the novel BRAF inhibitor vemurafenib in metastatic melanoma. Diagn Mol Pathol 21:1–8CrossRefPubMedGoogle Scholar
  35. 35.
    Spittle C, Ward MR, Nathanson KL et al (2007) Application of a BRAF pyrosequencing assay for mutation detection and copy number analysis in malignant melanoma. J Mol Diagn 9:464–471CrossRefPubMedGoogle Scholar
  36. 36.
    Casula M, Colombino M, Satta MP et al (2004) BRAF gene is somatically mutated but does not make a major contribution to malignant melanoma susceptibility: the Italian Melanoma Intergroup Study. J Clin Oncol 22:282–292Google Scholar
  37. 37.
    Colombino M, Capone M, Lissia A et al (2012) BRAF/NRAS mutation frequencies among primary tumors and metastases in patients with melanoma. J Clin Oncol 30:2522–2529CrossRefPubMedGoogle Scholar
  38. 38.
    Long GV, Wilmott JS, Capper D et al (2013) Immunohistochemistry is highly sensitive and specific for the detection of V600E BRAF mutation in melanoma. Am J Surg Pathol 37:61–65CrossRefPubMedGoogle Scholar
  39. 39.
    Capper D, Preusser M, Habel A et al (2011) Assessment of BRAF V600E mutation status by immunohistochemistry with a mutation-specific monoclonal antibody. Acta Neuropathol 122:11–19CrossRefPubMedGoogle Scholar
  40. 40.
    Koperek O, Kornauth C, Capper D et al (2012) Immunohistochemical detection of the BRAF V600E-mutated protein in papillary thyroid carcinoma. Am J Surg Pathol 36:844–850CrossRefPubMedGoogle Scholar
  41. 41.
    Long GV, Trefzer U, Davies MA et al (2012) Dabrafenib in patients with Val600Glu or Val600Lys BRAF-mutant melanoma metastatic to the brain (BREAK-MB): a multicentre, open-label, phase 2 trial. Lancet Oncol 13:1087–1095CrossRefPubMedGoogle Scholar
  42. 42.
    Panka DJ, Sullivan RJ, Mier JW (2010) An inexpensive, specific and highly sensitive protocol to detect the BrafV600E mutation in melanoma tumor biopsies and blood. Melanoma Res 20:401–407PubMedGoogle Scholar
  43. 43.
    Bucheit AD, Suklawer E, Jakob JA et al (2013) Clinical characteristics and outcomes with specific BRAF and NRAS mutations in patients with metastatic melanoma. Cancer 119:3821–3829CrossRefPubMedGoogle Scholar
  44. 44.
    Moreau S, Saiag P, Aegerter P et al (2012) Prognostic value of BRAF V600 mutations in melanoma patients after resection of metastatic lymph nodes. Ann Surg Oncol 19:4314–4321CrossRefPubMedGoogle Scholar
  45. 45.
    Ardekani GS, Jafarnejad SM, Tan L et al (2012) The prognostic value of BRAF mutation in colorectal cancer and melanoma: a systematic review and meta-analysis. PLoS One 7:e47054CrossRefGoogle Scholar
  46. 46.
    Lee JH, Choi JW, Kim YS (2011) Frequencies of BRAF and NRAS mutations are different in histological types and sites of origin of cutaneous melanoma: a meta-analysis. Br J Dermatol 164:776–784CrossRefPubMedGoogle Scholar
  47. 47.
    Jakob JA, Bassett RL Jr, Ng CS et al (2012) NRAS mutation status is an independent prognostic factor in metastatic melanoma. Cancer 118:4014–4023CrossRefPubMedGoogle Scholar
  48. 48.
    Kelleher FC, McArthur GA (2012) Targeting NRAS in melanoma. Cancer J 18:132–136CrossRefPubMedGoogle Scholar
  49. 49.
    Davies MA, Samuels Y (2010) Analysis of the genome to personalized therapy for melanoma. Oncogene 29:5545–5555CrossRefPubMedGoogle Scholar
  50. 50.
    Hodi FS, Friedlander P, Corless CL et al (2008) Major response to imatinib mesylate in KIT-mutated melanoma. J Clin Oncol 26:2046–2051CrossRefPubMedGoogle Scholar
  51. 51.
    Lyle M, Long G (2013) Diagnosis and treatment of KIT-mutant metastatic melanoma. J Clin Oncol 31:3176–3181CrossRefPubMedGoogle Scholar
  52. 52.
    Carvajal RD (2013) Another option in our KIT of effective therapies for advanced melanoma. J Clin Oncol 26:3173–3175CrossRefGoogle Scholar
  53. 53.
    Guo J, Si L, Kong Y et al (2011) Phase II, open-label, single-arm trial of imatinib mesylate in patients with metastatic melanoma harboring c-Kit mutation or amplification. J Clin Oncol 29:2904–2909CrossRefPubMedGoogle Scholar
  54. 54.
    Carjaval RD, Antonescu CR, Wolchok JD et al (2011) KIT as a therapeutic target in metastatic melanoma. JAMA 305:2327–2334CrossRefGoogle Scholar
  55. 55.
    Hodi FS, Corless CL, Giobbie-Hurder A et al (2013) Imatinib for melanomas harboring mutationally activated or amplified KIT arising on mucosal, acral, and chronically sun-damage skin. J Clin Oncol 26:3182–3190CrossRefGoogle Scholar
  56. 56.
    Handolias D, Hamilton AL, Salemi R et al (2010) Clinical responses observed with imatinib or sorafenib in melanoma patients expressing mutations in KIT. Br J Cancer 102:1219–1223CrossRefPubMedGoogle Scholar
  57. 57.
    Van Raamsdonk CD, Bezrookove V, Green G et al (2009) Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi. Nature 457:599–602CrossRefPubMedGoogle Scholar
  58. 58.
    Van Raamsdonk CD, Griewank KG, Crosby MB et al (2010) Mutations in GNA11 in uveal melanoma. N Engl J Med 363:2191–2199CrossRefPubMedGoogle Scholar
  59. 59.
    Weber JL, Smalley KS, Sondak VK et al (2013) Conjunctival melanomas harbor BRAF and NRAS mutations—Letter. Clin Cancer Res, epub ahead of print.Google Scholar
  60. 60.
    Patel M, Smyth E, Chapman PB et al (2011) Therapeutic implications of emerging molecular biology of uveal melanoma. Clin Cancer Res 17:2087–2100CrossRefPubMedGoogle Scholar
  61. 61.
    Carvajal RD, Sosman JA, Quevedo F et al (2013) Phase II study of selumetinib (sel) versus temozolomide (TMZ) in Gnaq/Gna11(Gq/11) mutant (mut) uveal melanoma (UM). J Clin Oncol; Abs 9003Google Scholar
  62. 62.
    Abdel-Rahman MH, Pilarski R, Cebulla CM et al (2011) Germline BAP1 mutation predisposes to uveal melanoma, lung adenocarcinoma, meningioma, and other cancers. J Med Genet 48:856–859CrossRefPubMedGoogle Scholar
  63. 63.
    Wiesner T, Obenauf AC, Murali R et al (2011) Germline mutations in BPA1 predispose to melanocytic tumors. Nat Genet 43:1018–1021CrossRefPubMedGoogle Scholar
  64. 64.
    Njauw CJ, Kim I, Piris A et al (2012) Germline BAP1 inactivation is preferentially associated with metastatic ocular melanoma and cutaneous-ocular melanoma families. PLoS ONE 7:e35295CrossRefPubMedGoogle Scholar
  65. 65.
    Oken MD, Worley LA, Char DH et al (2012) Collaborative Ocular Oncology Group Report No. 1: Prospective validation of a multi-gene prognostic assay in uveal melanoma. Ophthalmology 119:1596–1603CrossRefGoogle Scholar
  66. 66.
    Weber J (2011) Immunotherapy for melanoma. Curr Opin Oncol 23:163–169CrossRefPubMedGoogle Scholar
  67. 67.
    Keilholz U, Conradt C, Legha SS et al (1998) Results of interleukin-2-based treatment in advanced melanoma: a case record-based analysis of 631 patients. J Clin Oncol 16:2921–2929PubMedGoogle Scholar
  68. 68.
    Hodi FS, O’Day SJ, McDermott DF et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723CrossRefPubMedGoogle Scholar
  69. 69.
    Topalian SL, Hodi FS, Brahmer JR et al (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366:2443–2454CrossRefPubMedGoogle Scholar
  70. 70.
    Rosenberg SA, Yang JC, Sherry RM et al (2011) Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin Cancer Res 17:4550–4557CrossRefPubMedGoogle Scholar
  71. 71.
    Pilon-Thomas S, Kuhn L, Ellwanger S et al (2012) Efficacy of adoptive cell transfer of tumor-infiltrating lymphocytes after lymphopenia induction for metastatic melanoma. J Immunother 35:615–620CrossRefPubMedGoogle Scholar
  72. 72.
    Coppola D, Nebozhyn M, Khalil F et al (2011) Unique ectopic lymph node-like structures present in human primary colorectal carcinoma are identified by immune gene array profiling. Am J Pathol 179:37–45CrossRefPubMedGoogle Scholar
  73. 73.
    Messina JL, Fenstermacher DA, Eschrich S et al (2012) 12-chemokine gene signature identifies lymph node-like structures in melanoma:potential for patient selection for immunotherapy? Sci Rep 2:765CrossRefPubMedGoogle Scholar
  74. 74.
    Hoejberg L, Bastholt L, Johansen JS et al (2012) Serum interleukin-6 as a prognostic biomarker in patients with metastatic melanoma. Melanoma Res 22:287–293CrossRefPubMedGoogle Scholar
  75. 75.
    Joseph RW, Sullivan RJ, Harrell R et al (2012) Correlation of NRAS mutations with clinical response to high-dose IL-2 in patients with advanced melanoma. J Immunother 35:66–72CrossRefPubMedGoogle Scholar
  76. 76.
    Shahabi V, Whitney G, Hamid O et al (2012) Assessment of association between BRAF-V600E mutation status in melanomas and clinical response to ipilimumab. Cancer Immunol Immunother 61:733–777CrossRefPubMedGoogle Scholar
  77. 77.
    Gadiot J, Hooijkaas AI, Kaiser AD et al (2012) Overall survival and PD-L1 expression in metastasized malignant melanoma. Cancer 117:2192–2201CrossRefGoogle Scholar
  78. 78.
    Dong H, Strome SE, Salomao DR et al (2002) Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 8:793–800CrossRefPubMedGoogle Scholar
  79. 79.
    Iwai Y, Ishida M, Tanaka Y et al (2002) Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci USA 99:12293–12297CrossRefPubMedGoogle Scholar
  80. 80.
    Brahmer JR, Tykodi SS, Chow LQ et al (2012) Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 366:2455–2465CrossRefPubMedGoogle Scholar
  81. 81.
    Hamid O, Robert C, Daud A et al (2013) Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med 369:134–144CrossRefPubMedGoogle Scholar
  82. 82.
    Weber JS, Kudchadkar RR, Gibney GT et al (2013) Safety, efficacy, and biomarkers of nivolumab With vaccine in ipilimumab-refractory or -naive melanoma. J Clin Oncol, epub ahead of print.Google Scholar
  83. 83.
    Kirkwood JM, Tarhini AA (2009) Biomarkers of therapeutic response in melanoma and renal cell carcinoma: potential inroads to improved immunotherapy. J Clin Oncol 27:2583–2585CrossRefPubMedGoogle Scholar
  84. 84.
    Pearlman BL (2011) The IL-28 genotype: how it will affect the care of patients with hepatitis C virus infection. Curr Gastroenterol Rep 13:78–86CrossRefPubMedGoogle Scholar
  85. 85.
    Peled N, Oton AB, Hirsch FR et al (2009) MAGE A3 antigen-specific cancer immunotherapeutic. Immunotherapy 1:19–25CrossRefPubMedGoogle Scholar
  86. 86.
    Kirkwood JM, Sondak VK, Hersey P et al (2009) Adjuvant systemic therapy for high-risk melanoma patients. In: Balch CM, Houghton AN, Sober AJ, Soong S-J, Atkins MB, Thompson JF (eds) Cutaneous melanoma, 5th edn. Quality Medical Publishing, St Louis, MO, pp 669–692Google Scholar
  87. 87.
    Eggermont AM, Suciu S, Santinami M et al (2008) Adjuvant therapy with pegylated interferon alfa-2b versus observation alone in resected stage III melanoma: final results of EORTC 18991, a randomized phase III trial. Lancet 372:117–126CrossRefPubMedGoogle Scholar
  88. 88.
    Eggermont AM, Suciu S, Testori A et al (2012) Ulceration and stage are predictive of interferon efficacy in melanoma: results of the phase III adjuvant trials EORTC 18952 and EORTC 18991. Eur J Cancer 48:218–225CrossRefPubMedGoogle Scholar
  89. 89.
    Eggermont AM, Suciu S, Testori A et al (2012) Long-term results of the randomized phase III trial EORTC 18991 of adjuvant therapy with pegylated interferon alfa-2b versus observation in resected stage III melanoma. J Clin Oncol 30:3810–3818CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, New York 2014

Authors and Affiliations

  • Ragini Kudchadkar
    • 1
  • Geoffrey Gibney
    • 1
  • Vernon K. Sondak
    • 1
  1. 1.Department of Cutaneous OncologyMoffitt Cancer CenterTampaUSA

Personalised recommendations