Skip to main content

Advertisement

Log in

Assessment of association between BRAF-V600E mutation status in melanomas and clinical response to ipilimumab

  • Short communication
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Ipilimumab, a fully human monoclonal antibody against cytotoxic T lymphocyte antigen-4, has demonstrated significant improvement in overall survival in previously treated advanced melanoma patients. The BRAF inhibitor, vemurafenib, has shown up to 78% objective response rates in melanoma patients harboring the BRAF-V600E mutation but not in patients lacking the mutation. As an immune potentiator, the mechanism of action of ipilimumab may not be dependent of the activity of the BRAF pathway. To test this, we investigated whether the clinical activity of ipilimumab would be affected by the BRAF-V600E mutation status of the tumors. Thus, this retrospective analysis was carried using a set of tumor biopsies from a completed phase II clinical trial. CA184004 was a randomized, double-blind, multicenter trial of 82 previously treated or untreated patients with unresectable stage III/IV melanoma. Patients received ipilimumab 3 or 10 mg/kg every 3 weeks for four doses followed by maintenance dosing in eligible patients. The BRAF-V600E mutation status for 80 patients was determined in tumor biopsies by PCR-based assays. Data on disease control were available for 69 patients with evaluated BRAF-V600E mutation status. Rates of objective responses and stable disease in patients with BRAF-V600E mutation positive tumors (30%) were comparable to those in patients with the wild-type gene (~33%). Eleven patients displayed Durable Disease Control (DDC) of which 55% had BRAF-V600E mutation positive tumors and 45% did not. In the 48 patients showing no DDC, the mutation frequency was 50%. In this study, no association between BRAF-V600E mutation status of melanoma tumors and DDC after treatment with ipilimumab was detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, Akerley W et al. (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363(8):711–723

    Google Scholar 

  2. Cohen Y, Xing M, Mambo E, Guo Z, Wu G, Trink B, Beller U, Westra WH, Ladenson PW, Sidransky D (2003) Braf mutation in papillary thyroid carcinoma. J Natl Cancer Inst 95(8):625–627

    Article  PubMed  CAS  Google Scholar 

  3. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, Davis N et al (2002) Mutations of the braf gene in human cancer. Nature 417(6892):949–954

    Article  PubMed  CAS  Google Scholar 

  4. Fukushima T, Suzuki S, Mashiko M, Ohtake T, Endo Y, Takebayashi Y, Sekikawa K, Hagiwara K, Takenoshita S (2003) Braf mutations in papillary carcinomas of the thyroid. Oncogene 22(41):6455–6457

    Article  PubMed  CAS  Google Scholar 

  5. Honecker F, Wermann H, Mayer F, Gillis AJ, Stoop H, van Gurp RJ, Oechsle K, Steyerberg E, Hartmann JT, Dinjens WN, Oosterhuis JW et al (2009) Microsatellite instability, mismatch repair deficiency, and braf mutation in treatment-resistant germ cell tumors. J Clin Oncol 27(13):2129–2136

    Article  PubMed  CAS  Google Scholar 

  6. Oliveira C, Pinto M, Duval A, Brennetot C, Domingo E, Espin E, Armengol M, Yamamoto H, Hamelin R, Seruca R, Schwartz S Jr (2003) Braf mutations characterize colon but not gastric cancer with mismatch repair deficiency. Oncogene 22(57):9192–9196

    Article  PubMed  CAS  Google Scholar 

  7. Singer G, Oldt R 3rd, Cohen Y, Wang BG, Sidransky D, Kurman RJ, Shih IM (2003) Mutations in braf and kras characterize the development of low-grade ovarian serous carcinoma. J Natl Cancer Inst 95(6):484–486

    Article  PubMed  CAS  Google Scholar 

  8. Tannapfel A, Sommerer F, Benicke M, Katalinic A, Uhlmann D, Witzigmann H, Hauss J, Wittekind C (2003) Mutations of the braf gene in cholangiocarcinoma but not in hepatocellular carcinoma. Gut 52(5):706–712

    Article  PubMed  CAS  Google Scholar 

  9. Wang L, Cunningham JM, Winters JL, Guenther JC, French AJ, Boardman LA, Burgart LJ, McDonnell SK, Schaid DJ, Thibodeau SN (2003) Braf mutations in colon cancer are not likely attributable to defective DNA mismatch repair. Cancer Res 63(17):5209–5212

    PubMed  CAS  Google Scholar 

  10. Yuen ST, Davies H, Chan TL, Ho JW, Bignell GR, Cox C, Stephens P, Edkins S, Tsui WW, Chan AS, Futreal PA et al (2002) Similarity of the phenotypic patterns associated with braf and kras mutations in colorectal neoplasia. Cancer Res 62(22):6451–6455

    PubMed  CAS  Google Scholar 

  11. Singh M, Lin J, Hocker TL, Tsao H (2008) Genetics of melanoma tumorigenesis. Br J Dermatol 158(1):15–21

    Article  PubMed  CAS  Google Scholar 

  12. Flaherty KT, Puzanov I, Kim KB, Ribas A, McArthur GA, Sosman JA, O’Dwyer PJ, Lee RJ, Grippo JF, Nolop K, Chapman PB (2010) Inhibition of mutated, activated braf in metastatic melanoma. N Engl J Med 363(9):809–819

    Article  PubMed  CAS  Google Scholar 

  13. Livingstone E, Zimmer L, Piel S, Schadendorf D (2010) Plx4032: Does it keep its promise for metastatic melanoma treatment? Expert Opin Investig Drugs 19(11):1439–1449

    Article  PubMed  CAS  Google Scholar 

  14. Hatzivassiliou G, Song K, Yen I, Brandhuber BJ, Anderson DJ, Alvarado R, Ludlam MJ, Stokoe D, Gloor SL, Vigers G, Morales T et al (2010) Raf inhibitors prime wild-type raf to activate the mapk pathway and enhance growth. Nature 464(7287):431–435

    Article  PubMed  CAS  Google Scholar 

  15. Heidorn SJ, Milagre C, Whittaker S, Nourry A, Niculescu-Duvas I, Dhomen N, Hussain J, Reis-Filho JS, Springer CJ, Pritchard C, Marais R (2010) Kinase-dead braf and oncogenic ras cooperate to drive tumor progression through craf. Cell 140(2):209–221

    Article  PubMed  CAS  Google Scholar 

  16. Poulikakos PI, Zhang C, Bollag G, Shokat KM, Rosen N (2010) Raf inhibitors transactivate raf dimers and erk signalling in cells with wild-type braf. Nature 464(7287):427–430

    Article  PubMed  CAS  Google Scholar 

  17. Yuan J, Gnjatic S, Li H, Powel S, Gallardo HF, Ritter E, Ku GY, Jungbluth AA, Segal NH, Rasalan TS, Manukian G et al (2008) Ctla-4 blockade enhances polyfunctional ny-eso-1 specific t cell responses in metastatic melanoma patients with clinical benefit. Proc Nat Acad Sci USA 105(51):20410–20415

    Article  PubMed  CAS  Google Scholar 

  18. Hamid O, Schmidt H, Nissan A, Ridolfi L, Aamdal S, Hansson J, Guida M, Hyams DM, Gomez H, Bastholt L, Chasalow SD et al (2011) A prospective phase ii trial exploring the association between tumor microenvironment biomarkers and clinical activity of ipilimumab in advanced melanoma. J Transl Med 9(1):204

    Article  PubMed  CAS  Google Scholar 

  19. Benlloch S, Paya A, Alenda C, Bessa X, Andreu M, Jover R, Castells A, Llor X, Aranda FI, Massuti B (2006) Detection of braf v600e mutation in colorectal cancer: comparison of automatic sequencing and real-time chemistry methodology. J Mol Diagn 8(5):540–543

    Article  PubMed  CAS  Google Scholar 

  20. Hamid O, Chasalow S, Tsuchihashi Z, et al. (2009) Association of baseline and on-study tumor biopsy markers with clinical activity in patients (pts) with advanced melanoma treated with ipilimumab. J Clin Oncol 27(Suppl), Abstract 9008

    Google Scholar 

  21. Omholt K, Platz A, Kanter L, Ringborg U, Hansson J (2003) Nras and braf mutations arise early during melanoma pathogenesis and are preserved throughout tumor progression. Clin Cancer Res 9(17):6483–6488

    PubMed  CAS  Google Scholar 

  22. Pollock PM, Harper UL, Hansen KS, Yudt LM, Stark M, Robbins CM, Moses TY, Hostetter G, Wagner U, Kakareka J, Salem G et al (2003) High frequency of braf mutations in nevi. Nat Genet 33(1):19–20

    Article  PubMed  CAS  Google Scholar 

  23. Somasundaram R, Swoboda R, Caputo L, Otvos L, Weber B, Volpe P, van Belle P, Hotz S, Elder DE, Marincola FM, Schuchter L et al (2006) Human leukocyte antigen-a2-restricted ctl responses to mutated braf peptides in melanoma patients. Cancer Res 66(6):3287–3293

    Article  PubMed  CAS  Google Scholar 

  24. Eggermont AM (2010) Advances in systemic treatment of melanoma. Ann Oncol 21(Suppl 7):vii339–vii344

    Google Scholar 

  25. Weber J (2008) Overcoming immunologic tolerance to melanoma: targeting ctla-4 with ipilimumab (mdx-010). Oncologist 13(Suppl 4):16–25

    Article  PubMed  CAS  Google Scholar 

  26. Boni A, Cogdill AP, Dang P, Udayakumar D, Njauw CN, Sloss CM, Ferrone CR, Flaherty KT, Lawrence DP, Fisher DE, Tsao H et al (2010) Selective brafv600e inhibition enhances t-cell recognition of melanoma without affecting lymphocyte function. Cancer Res 70(13):5213–5219

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Rachel Humphrey and Dr. Maria Jure-Kunkel for their critical review of the paper and Dr. Ping Zhan for her contribution to the data analysis in this paper.

Conflict of interest

Vafa Shahabi, Gena Whitney, Scott D. Chasalow, Suresh Alaparthy, and Jeffrey R. Jackson are employees of Bristol-Myers Squibb, the manufacturer of ipilimumab. Omid Hamid and Henrik Schmidt declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vafa Shahabi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shahabi, V., Whitney, G., Hamid, O. et al. Assessment of association between BRAF-V600E mutation status in melanomas and clinical response to ipilimumab. Cancer Immunol Immunother 61, 733–737 (2012). https://doi.org/10.1007/s00262-012-1227-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-012-1227-3

Keywords

Navigation