Skip to main content

Application of Metabolic Flux Analysis to Plants

  • Protocol
  • First Online:
Plant Metabolic Flux Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1090))

Abstract

This volume compiles a series of chapters that cover the major aspects of plant metabolic flux analysis, such as but not limited to labeling of plant material, acquisition of labeling data, mathematical modeling of metabolic network at the cell, tissue, and plant level. A short revue, including methodological points and applications of flux analysis to plants, is presented in this introductory chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sonnewald U, Hajiraezaei MR, Kossmann J et al (1997) Expression of a yeast invertase in the apoplast of potato tubers increases tuber size. Nat Biotechnol 15:794–797

    PubMed  CAS  Google Scholar 

  2. Trethewey RN, Geigenberger P, Hajirezaei MR et al (1998) Combined expression of glucokinase and invertase in potato tubers leads to a dramatic reduction in starch accumulation and a stimulation of glycolysis. Plant J 15:109–118

    PubMed  CAS  Google Scholar 

  3. Trethewey RN, Riesmeier JW, Willmitzer L, Stitt M, Geigenberger P (1999) Tuber-specific expression of a yeast invertase and a bacterial glucokinase in potato leads to an activation of sucrose phosphate synthase and the creation of a sucrose futile cycle. Planta 208(2):227–238

    PubMed  CAS  Google Scholar 

  4. Thimm O, Blasing O, Gibon Y (2004) MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J 37:914–939

    PubMed  CAS  Google Scholar 

  5. Fernie AR, Geigenberger P, Stitt M (2005) Flux an important, but neglected, component of functional genomics. Curr Opin Plant Biol 8:174–182

    PubMed  CAS  Google Scholar 

  6. Brouquisse R, James F, Raymond P et al (1991) Study of glucose starvation in excised maize root tips. Plant Physiol 96:619–626

    PubMed  CAS  Google Scholar 

  7. Dieuaide-Noubhani M, Canioni P, Raymond P et al (1997) Sugar-starvation-induced changes of carbon metabolism in excised maize root tips. Plant Physiol 115:1505–1513

    PubMed  CAS  Google Scholar 

  8. Gibbs M, Beevers H (1955) Glucose dissimilation in the higher plant. Effect of age of tissue. Plant Physiol 30:343–347

    PubMed  CAS  Google Scholar 

  9. ap Rees T (1980) Assessment of the contribution of metabolic pathways to plant respiration. In: Stumpf PK, Conn EE (eds) The biochemistry of plants, vol 2. Academic, London, pp 1–29

    Google Scholar 

  10. Dieuaide-Noubhani M, Raffard G, Canioni P, Pradet A, Raymond P (1995) Quantification of compartmented metabolic fluxes in maize root tips using isotope distribution from 13C- or 14C-labeled glucose. J Biol Chem 270:13147–13159

    PubMed  CAS  Google Scholar 

  11. Oh Y-K, Palsson BO, Park SM et al (2007) Genome-scale reconstruction of metabolic network in Bacillus subtilis based on high-throughput phenotyping and gene essentiality data. J Biol Chem 282:28791–28799

    PubMed  CAS  Google Scholar 

  12. Orth LD, Conrad TM, Na J et al (2011) A comprehensive genome-scale reconstruction of Escherichia coli metabolism. Mol Syst Biol 7:535

    PubMed  Google Scholar 

  13. Nogales J, Gudmundsson S, Knight EM et al (2012) Detailing the optimality of photosynthesis in cyanobacteria through systems biology analysis. Proc Natl Acad Sci USA 109:2678–2683

    PubMed  CAS  Google Scholar 

  14. Duarte NC, Becker SA, Jamshidi N et al (2007) Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc Natl Acad Sci USA 104(6):1777–1782

    PubMed  CAS  Google Scholar 

  15. Bordbar A, Palsson BO (2011) Using the reconstructed genome-scale human metabolic network to study physiology and pathology. J Intern Med 271:131–141

    Google Scholar 

  16. Poolman MG, Miguet L, Sweetlove LJ, Fell DA (2009) A genome-scale metabolic model of Arabidopsis and some of its properties. Plant Physiol 151(3):1570–1581

    PubMed  CAS  Google Scholar 

  17. de Oliveira Dal’Molin CG, Quek LE, Palfreyman RW et al (2010) AraGEM, a genome-scale reconstruction of the primary metabolic network in Arabidopsis. Plant Physiol 152:579–589

    PubMed  Google Scholar 

  18. de Oliveira Dal’Molin CG, Quek LE, Palfreyman RW et al (2010) C4GEM, a genome-scale metabolic model to study C4 plant metabolism. Plant Physiol 154:1871–1885

    Google Scholar 

  19. Thiele I, Palsson BO (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat Protoc 5:93–121

    PubMed  CAS  Google Scholar 

  20. Schuster S, Dandekar T, Fell DA (1999) Detection of elementary flux modes in biochemical networks: a promising tool for pathway analysis and metabolic engineering. Trends Biotechnol 17:53–60

    PubMed  CAS  Google Scholar 

  21. Klamt S, Stelling J (2002) Combinatorial complexity of pathway analysis in metabolic networks. Mol Biol Rep 29:233–236

    PubMed  CAS  Google Scholar 

  22. Poolman MG, Assmus HE, Fell DA (2004) Applications of metabolic modelling to plant metabolism. J Exp Bot 55:1177–1186

    PubMed  CAS  Google Scholar 

  23. Rohwer JM, Botha FC (2001) Analysis of sucrose accumulation in the sugar cane culm on the basis of in vitro kinetic data. Biochem J 358:437–445

    PubMed  CAS  Google Scholar 

  24. Beurton-Aimar M, Beauvoit B, Monier A et al (2011) Comparison between elementary flux modes analysis and 13C-metabolic fluxes measured in bacterial and plant cells. BMC Syst Biol 5:95

    PubMed  CAS  Google Scholar 

  25. Bonarius HPJ, Schmid G, Tramper J (1997) Flux analysis of underdetermined metabolic networks: the quest for the missing constraints. Trends Biotechnol 15:308–314

    CAS  Google Scholar 

  26. Roscher A, Kruger NJ, Ratcliffe RG (2000) Strategies for metabolic flux analysis in plants using isotope labelling. J Biotechnol 77:81–102

    PubMed  CAS  Google Scholar 

  27. Morgan JA, Rhodes D (2002) Mathematical modeling of plant metabolic pathways. Metab Eng 4:80–89

    PubMed  CAS  Google Scholar 

  28. Salon C, Raymond P, Pradet A (1988) Quantification of carbon fluxes through the tricarboxylic acid cycle in early germinating lettuce embryos. J Biol Chem 263:12278–12287

    PubMed  CAS  Google Scholar 

  29. Ratcliffe RG, Shachar-Hill Y (2006) Measuring multiple fluxes through plant metabolic networks. Plant J 45:490–511

    PubMed  CAS  Google Scholar 

  30. Dieuaide-Noubhani M, Alonso AP, Rolin D et al (2007) Metabolic flux analysis: recent advances in carbon metabolism in plants. In: Baginsky S, Fernie AR (eds) Plant systems biology. Birkhäuser, Basel, pp 213–243

    Google Scholar 

  31. Libourel IGL, Shachar-Hill Y (2008) Metabolic flux analysis in plants: from intelligent design to rational engineering. Annu Rev Plant Biol 59:625–650

    PubMed  CAS  Google Scholar 

  32. Kruger NJ, Ratcliffe RG (2012) Pathways and fluxes: exploring the plant metabolic network. J Exp Bot 63:2243–2246

    PubMed  CAS  Google Scholar 

  33. Chang YJ, Suthers PF, Maranas CD (2008) Identification of optimal measurements sets for complete flux elucidation in metabolic flux analysis experiments. Biotechnol Bioeng 100:1039–1049

    PubMed  CAS  Google Scholar 

  34. Williams TCR, Miguet L, Masakapalli SK et al (2008) Metabolic network fluxes in heterotrophic Arabidopsis cells: stability of the flux distribution under different oxygenation conditions. Plant Physiol 148:704–718

    PubMed  CAS  Google Scholar 

  35. Libourel IGL, Gehan JP, Shachar-Hill Y (2007) Design of substrate label for steady state flux measurements in plant systems using the metabolic network of Brassica napus embryos. Phytochemistry 68:2211–2221

    PubMed  CAS  Google Scholar 

  36. Saglio PH, Pradet A (1980) Soluble sugar, respiration, and energy charge during aging of excised maize root tips. Plant Physiol 66:516–519

    PubMed  CAS  Google Scholar 

  37. Junker BH, Lonien J, Heady LE, Rogers A, Schwender J (2007) Parallel determination of enzyme activities and in vivo fluxes in Brassica napus embryos grown on organic or inorganic nitrogen source. Phytochemistry 68:2232–2242

    PubMed  CAS  Google Scholar 

  38. Allen DK, Young JD (2013) Carbon and nitrogen provisions alter the metabolic flux in developing soybean embryos. Plant Physiol 161:1458–1475

    PubMed  CAS  Google Scholar 

  39. Glawischnig E, Tomas A, Eisenreich W et al (2000) Auxin biosynthesis in maize kernels. Plant Physiol 123:1109–1119

    PubMed  CAS  Google Scholar 

  40. Alonso AP, Val DL, Shachar-Hill Y (2011) Central metabolic fluxes in the endosperm of developing maize seeds and their implications for metabolic engineering. Metab Eng 13:96–107

    PubMed  CAS  Google Scholar 

  41. Römisch-Margl W, Schramek N, Radykewicz T et al (2007) 13CO2 as a universal metabolic tracer in isotopologue perturbation experiments. Phytochemistry 68:2273–2289

    PubMed  Google Scholar 

  42. Huege J, Sulpice R, Gibon Y et al (2007) GC-EI-TOF-MS analysis of in vivo carbon-partitioning into soluble metabolite pools of higher plants by monitoring isotope dilution after 13CO2 labelling. Phytochemistry 68:2258–2272

    PubMed  CAS  Google Scholar 

  43. Chen W-P, Yang X-Y, Harms GL et al (2011) An automated growth enclosure for metabolic labeling of Arabidopsis thaliana with C-13-carbon dioxide—an in vivo labeling system for proteomics and metabolomics research. Proteome Sci 9:9–22

    PubMed  CAS  Google Scholar 

  44. Szecowka M, Heise R, Tohge T et al (2013) Metabolic fluxes in an illuminated Arabidopsis rosette. Plant cell 25:694–714

    PubMed  CAS  Google Scholar 

  45. Ettenhuber C, Radykewicz T, Kofer W et al (2005) Metabolic flux analysis in complex isotopolog space. Recycling of glucose in tobacco plants. Phytochemistry 66:323–335

    PubMed  CAS  Google Scholar 

  46. Lin Y-H, Lin M-H, Gresshoff PM, Ferguson BJ (2011) An efficient petiole-feeding bioassay for introducing aqueous solutions into dicotyledonous plants. Nat Protoc 6:36–45

    PubMed  CAS  Google Scholar 

  47. Roessner-Tunali U, Liu JL, Leisse A et al (2004) Kinetics of labelling of organic and amino acids in potato tubers by gas chromatography mass spectrometry following incubation in 13C labelled isotopes. Plant J 39:668–679

    PubMed  CAS  Google Scholar 

  48. Rontein D, Dieuaide-Noubhani M, Dufourc EJ, Raymond P, Rolin D (2002) The metabolic architecture of plant cells. Stability of central metabolism and flexibility of anabolic pathway during the growth cycle of tomato cells. J Biol Chem 277:43948–43960

    PubMed  CAS  Google Scholar 

  49. Sriram G, Fulton DB, Iyer VV et al (2004) Quantification of compartmented metabolic fluxes in developing soybean embryos by employing biosynthetically directed fractional 13C labeling, two dimensional [13C, 1H] nuclear magnetic resonance, and comprehensive isotopomer balancing. Plant Physiol 136:3043–3057

    PubMed  CAS  Google Scholar 

  50. Schwender J, Shachar-Hill Y, Ohlrogge JB (2006) Mitochondrial metabolism in developing embryos of Brassica napus. J Biol Chem 281:34040–34047

    PubMed  CAS  Google Scholar 

  51. Alonso AP, Goffman FD, Ohlrogge JB, Shachar-Hill Y (2007) Carbon conversion efficiency and central metabolic fluxes in developing sunflower (Helianthus annuus L.) embryos. Plant J 52:296–308

    PubMed  CAS  Google Scholar 

  52. Alonso AP, Dale VL, Shachar-Hill Y (2010) Understanding fatty acid synthesis in developing maize embryos using metabolic flux analysis. Metab Eng 12:488–497

    PubMed  Google Scholar 

  53. Allen DK, Ohlrogge JB, Shachar-Hill Y (2009) The role of light in soybean seed filling metabolism. Plant J 58:220–234

    PubMed  CAS  Google Scholar 

  54. Lonien J, Schwender J (2009) Analysis of metabolic flux phenotypes for two Arabidopsis mutants with severe impairment in seed storage lipid synthesis. Plant Physiol 151:1617–1634

    PubMed  CAS  Google Scholar 

  55. Alonso AP, Vigeolas H, Raymond P, Rolin D, Dieuaide-Noubhani M (2005) A new substrate cycle in plants. Evidence for a high glucosephosphate-to-glucose turnover from in vivo steady-state and pulse labeling experiments with [13C]glucose and [14C]glucose. Plant Physiol 138:2220–2232

    PubMed  CAS  Google Scholar 

  56. Alonso AP, Raymond P, Hernould M et al (2007) A metabolic flux analysis to study the role of sucrose synthase in the regulation of the carbon partitioning in central metabolism in maize root tips. Metab Eng 9:419–432

    PubMed  CAS  Google Scholar 

  57. Masakapalli SK, Kruger NJ, Ratcliffe RG (2013) The metabolic flux phenotype of heterotrophic Arabidopsis cells reveals a complex response to changes in nitrogen supply. Plant J. doi:10.1111/tpj.12142

    PubMed  Google Scholar 

  58. Stitt M, ap Rees T (1978) Pathways of carbohydrate oxidation in leaves of Pisum sativum and triticum aestivum. Phytochemistry 18:1905–1911

    Google Scholar 

  59. Roessner-Tunali U, Hegemann B, Lytovchenko A et al (2003) Metabolite analysis for the comparison of irrigated and non-irrigated field grown tomato of varying genotype. Plant Physiol 133:84–99

    PubMed  CAS  Google Scholar 

  60. Brouquisse RM, Evrard A, Rolin D, Raymond P, Roby C (2001) Regulation of protein degradation and protease expression by mannose in maize root tips. Pi sequestration by mannose may hinder the study of its signaling properties. Plant Physiol 125:1485–1498

    PubMed  CAS  Google Scholar 

  61. Keeling PL, Wood JR, Tyson RH, Bridges IG (1988) Starch biosynthesis in developing wheat grain. Evidence against the direct involvement of triose phosphates in the metabolic pathway. Plant Physiol 87:311–319

    PubMed  CAS  Google Scholar 

  62. Allen DK, Shachar-Hill Y, Ohlrogge JB (2007) Compartment specific labeling information in 13C metabolic flux analysis of plants. Phytochemistry 68:2197–2210

    PubMed  CAS  Google Scholar 

  63. Roscher A, Emsley L, Raymond P, Roby C (1998) Unidirectional steady state rates of central metabolism enzymes measured simultaneously in a living plant tissues. J Biol Chem 273:25053–25061

    PubMed  CAS  Google Scholar 

  64. Troufflard S, Roscher A, Thomasset B et al (2007) In vivo 13C NMR determines metabolic fluxes and steady state in linseed embryos. Phytochemistry 68:2341–2350

    PubMed  CAS  Google Scholar 

  65. Alonso AP, Piasecki RJ, Wang Y, LaClair RW, Shachar-Hill Y (2010) Quantifying the labeling and the levels of plant cell wall precursors using ion chromatography tandem mass spectrometry. Plant Physiol 153:915–924

    PubMed  CAS  Google Scholar 

  66. Koubaa M, Cocuron JC, Thomasset B, Alonso AP (2013) Highlighting the tricarboxylic acid cycle: liquid and gas chromatography-mass spectrometry analyses of 13C-labeled organic acids. Anal Biochem 436:151–159

    PubMed  CAS  Google Scholar 

  67. Zamboni N, Fischer E, Sauer U (2005) FiatFlux—a software for metabolic flux analysis from 13C-glucose experiments. BMC Bioinformatics 6:209

    PubMed  Google Scholar 

  68. Wiechert W, Möllney M, Petersen S, de Graaf AA (2001) A universal framework for 13C metabolic flux analysis. Metab Eng 3:265–283

    PubMed  CAS  Google Scholar 

  69. Quek LE, Wittmann C, Nielsen LK, Krömer JO (2009) OpenFLUX: efficient modeling software for 13C-based metabolic flux analysis. Microb Cell Fact 8:25

    PubMed  Google Scholar 

  70. Spielbauer G, Margl L, Hannah LC et al (2006) Robustness of central carbohydrate metabolism in developing maize kernels. Phytochemistry 67:1460–1475

    PubMed  CAS  Google Scholar 

  71. Hatzfeld WD, Stitt M (1990) A study of the rate of recycling of triose phosphates in heterotrophic Chenopodium rubrum cells, potato tubers and maize endosperm. Planta 180:198–204

    PubMed  CAS  Google Scholar 

  72. Hill SA, ap Rees T (1994) Fluxes of carbohydrate metabolism in ripening bananas. Planta 192:52–60

    CAS  Google Scholar 

  73. N’tchobo H, Dali N, Nguyen-Quoc B et al (1999) Starch synthesis in tomato remains constant throughout fruit development and is dependent on sucrose supply and sucrose synthase activity. J Exp Bot 50:1457–1463

    Google Scholar 

  74. Schwender J, Goffman F, Ohlrogge JB et al (2004) Rubisco without the Calvin cycle improves the carbon efficiency of developing green seeds. Nature 432:779–782

    PubMed  CAS  Google Scholar 

  75. Alonso AP, Raymond P, Rolin D, Dieuaide-Noubhani M (2007) Substrate cycles in the central metabolism of maize root tips under hypoxia. Phytochemistry 68:2222–2231

    PubMed  CAS  Google Scholar 

  76. McNeil SD, Nuccio ML, Rhodes D, Shachar-Hill Y, Hanson AD (2000) Radiotracer and computer modeling evidence that phospho-base methylation is the main route of choline synthesis in tobacco. Plant Physiol 123:371–380

    PubMed  CAS  Google Scholar 

  77. McNeil SD, Rhodes D, Russell BL et al (2000) Metabolic modeling identifies key constraints on an engineered glycine betaine synthesis pathway in tobacco. Plant Physiol 124:153–162

    PubMed  CAS  Google Scholar 

  78. Matsuda F, Morino K, Miyashita M, Miyagawa H (2003) Metabolic flux analysis of the phenylpropanoid pathway in wound-healing potato tuber tissue using stable isotope-labeled tracer and LC–MS spectroscopy. Plant Cell Physiol 44:510–517

    PubMed  CAS  Google Scholar 

  79. Heinzle E, Matsuda F, Miyagawa H, Wakasa K, Nishioka T (2007) Estimation of metabolic fluxes, expression levels and metabolite dynamics of a secondary metabolic pathway in potato using label pulse-feeding experiments combined with kinetic network modelling and simulation. Plant J 50:176–187

    PubMed  CAS  Google Scholar 

  80. Marshall-Colón AM, Sengupta N, Rhodes D, Dudareva N, Morgan J (2010) A kinetic model describes metabolic response to perturbations and distribution of flux control in the benzenoid network of Petunia hybrida. Plant J 62:64–76

    Google Scholar 

  81. Kacser H, Burns J (1973) The control of flux. Symp Soc Exp Biol 27:65–104

    PubMed  CAS  Google Scholar 

  82. Fell DA (1997) Understanding the control of metabolism. Portland Press, London

    Google Scholar 

  83. Antoniewicz MR, Kelleher JK, Stephanopoulos G (2007) Elementary metabolite units (EMU): a novel framework for modeling isotopic distributions. Metab Eng 9:68–86

    PubMed  CAS  Google Scholar 

  84. Young JD, Walther JL, Antoniewicz MR, Yoo H, Stephanopoulos G (2008) An elementary metabolite unit (EMU) based method of isotopically nonstationary flux analysis. Biotechnol Bioeng 99:686–699

    PubMed  CAS  Google Scholar 

  85. Shastri AA, Morgan JA (2007) A transient isotopic labeling methodology for 13C metabolic flux analysis of photoautotrophic microorganisms. Phytochemistry 68:2302–2312

    PubMed  CAS  Google Scholar 

  86. Young JD, Shastri AA, Stephanopoulos G, Morgan JA (2011) Mapping photoautotrophic metabolism with isotopically nonstationary 13C flux analysis. Metab Eng 13:656–665

    PubMed  CAS  Google Scholar 

  87. Kruger NJ, Le Lay P, Ratcliffe RG (2007) Vacuolar compartmentation complicates the steady-state analysis of glucose metabolism and forces reappraisal of sucrose cycling in plants. Phytochemistry 68:2189–2196

    PubMed  CAS  Google Scholar 

  88. Farré EM, Tiessen A, Roessner U et al (2001) Analysis of the compartmentation of glycolytic intermediates, nucleotides, sugars, organic acids, amino acids, and sugar alcohols in potato tubers using a nonaqueous fractionation method. Plant Physiol 127:685–700

    PubMed  Google Scholar 

  89. Benkeblia N, Shinano T, Osaki M (2007) Metabolite profiling and assessment of metabolome compartmentation of soybean leaves using non-aqueous fractionation and GC-MS analysis. Metabolomics 3:297–305

    CAS  Google Scholar 

  90. Krueger S, Giavalisco P, Krall L et al (2011) Topological map of the compartmentalized Arabidopsis thaliana leaf metabolome. PLoS One 6(3):e17806

    PubMed  CAS  Google Scholar 

  91. Schwender J, Ohlrogge JB (2002) Probing in vivo metabolism by stable isotope labeling of storage lipids and proteins in developing Brassica napus embryos. Plant Physiol 130:347–361

    PubMed  CAS  Google Scholar 

  92. Allen DK, Laclair RW, Ohlrogge JB, Shachar-Hill Y (2012) Isotope labelling of Rubisco subunits provides in vivo information on subcellular biosynthesis and exchange of amino acids between compartments. Plant Cell Environ 35:1232–1244

    PubMed  CAS  Google Scholar 

  93. Curien G, Ravanel S, Dumas R (2003) A kinetic model of the branch-point between the methionine and threonine biosynthesis pathways in Arabidopsis thaliana. Eur J Biochem 270:4615–4627

    PubMed  CAS  Google Scholar 

  94. Uys L, Botha FC, Hofmeyr J-HS et al (2007) Kinetic model of sucrose accumulation in maturing sugarcane culm tissue. Phytochemistry 68:2375–2392

    PubMed  CAS  Google Scholar 

  95. Gibon Y, Blaesing OE, Hannemann J et al (2004) A robot-based platform to measure multiple enzyme activities in Arabidopsis using a set of cycling assays: comparison of changes of enzyme activities and transcript levels during diurnal cycles and in prolonged darkness. Plant Cell 16:3304–3325

    PubMed  CAS  Google Scholar 

  96. Grafahrend-Belau E, Schreiber F, Koschützki D, Junker BH (2009) Flux balance analysis of barley seeds: a computational approach to study systemic properties of central metabolism. Plant Physiol 149:585–598

    PubMed  CAS  Google Scholar 

  97. Hay J, Schwender J (2011) Computational analysis of storage synthesis in developing Brassica napus L. (oilseed rape) embryos: flux variability analysis in relation to 13C metabolic flux analysis. Plant J 67:513–525

    PubMed  CAS  Google Scholar 

  98. Salon C, Lepetit M, Gamas P et al (2009) Analysis and modeling of the integrative response of Medicago truncatula to nitrogen constraints. C R Biol 332:1022–1033

    PubMed  CAS  Google Scholar 

  99. Génard M, Dauzat J, Franck N et al (2008) Carbon allocation in fruit trees: from theory to modelling. Trees 22:269–282

    Google Scholar 

  100. Génard M, Bertin N, Borel C et al (2007) Towards a virtual fruit focusing on quality: modelling features and potential uses. J Exp Bot 58:917–928

    PubMed  Google Scholar 

  101. Bertin N, Lecomte A, Brunel B, Fishman S, Génard M (2007) A model describing cell polyploidization in tissues of growing fruit as related to cessation of cell proliferation. J Exp Bot 58:1903–1913

    PubMed  CAS  Google Scholar 

  102. Martre P, Bertin N, Salon C, Génard M (2011) Modelling the size and composition of fruit, grain and seed by process-based simulation models. New Phytol 191:601–618

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Dieuaide-Noubhani, M., Alonso, A.P. (2014). Application of Metabolic Flux Analysis to Plants. In: Dieuaide-Noubhani, M., Alonso, A. (eds) Plant Metabolic Flux Analysis. Methods in Molecular Biology, vol 1090. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-688-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-688-7_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-687-0

  • Online ISBN: 978-1-62703-688-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics