Microinjection Manipulations in the Elucidation of Xenopus Brain Development

  • Cristine Smoczer
  • Lara Hooker
  • Saqib S. Sachani
  • Michael J. Crawford
Part of the Methods in Molecular Biology book series (MIMB, volume 1082)


Microinjection has a long and distinguished history in Xenopus and has been used to introduce a surprisingly diverse array of agents into embryos by both intra- and intercellular means. In addition to nuclei, investigators have variously injected peptides, antibodies, biologically active chemicals, lineage markers, mRNA, DNA, morpholinos, and enzymes. While enumerating many of the different microinjection approaches that can be taken, we will focus upon the mechanical operations and options available to introduce mRNA, DNA, and morpholinos intracellularly into early stage embryos for the study of neurogenesis.

Key words

Microinjection Morpholino mRNA Lineage marker Xenopus Over-expression Knockdown Transgenic Mutant 



M.J.C. is supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada Grant #203549.


  1. 1.
    Briggs R, King TJ (1952) Transplantation of living nuclei from blastula cells into enucleated frogs’ eggs. Proc Natl Acad Sci USA 38(5):455–463PubMedCrossRefGoogle Scholar
  2. 2.
    Gurdon JB (2006) Nuclear transplantation in Xenopus. Methods Mol Biol 325:1–9PubMedGoogle Scholar
  3. 3.
    Drysdale TA, Crawford MJ (1994) Effects of localized application of retinoic acid on Xenopus laevis development. Dev Biol 162(2):394–401PubMedCrossRefGoogle Scholar
  4. 4.
    Dolbeare F (1995) Bromodeoxyuridine: a diagnostic tool in biology and medicine, part II: oncology, chemotherapy and carcinogenesis. Histochem J 27(12):923–964PubMedGoogle Scholar
  5. 5.
    Roy S, Gardiner DM, Bryant SV (2000) Vaccinia as a tool for functional analysis in regenerating limbs: ectopic expression of Shh. Dev Biol 218(2):199–205PubMedCrossRefGoogle Scholar
  6. 6.
    Otto C, Schutz G, Niehrs C, Glinka A (2000) Dissecting GHRH- and pituitary adenylate cyclase activating polypeptide-mediated signalling in Xenopus. Mech Dev 94(1–2):111–116PubMedCrossRefGoogle Scholar
  7. 7.
    Cooke J, Smith JC (1989) Gastrulation and larval pattern in Xenopus after blastocoelic injection of a Xenopus-derived inducing factor: experiments testing models for the normal organization of mesoderm. Dev Biol 131(2):383–400PubMedCrossRefGoogle Scholar
  8. 8.
    Saint-Jeannet JP, Dawid IB (1994) Vertical versus planar neural induction in Rana pipiens embryos. Proc Natl Acad Sci USA 91(8):3049–3053PubMedCrossRefGoogle Scholar
  9. 9.
    Purcell L, Gruia-Gray J, Scanga S, Ringuette M (1993) Developmental anomalies of Xenopus embryos following microinjection of SPARC antibodies. J Exp Zool 265(2):153–164PubMedCrossRefGoogle Scholar
  10. 10.
    Kao KR, Elinson RP (1985) Alteration of the anterior-posterior embryonic axis: the pattern of gastrulation in macrocephalic frog embryos. Dev Biol 107(1):239–251PubMedCrossRefGoogle Scholar
  11. 11.
    Shi J, Severson C, Yang J, Wedlich D, Klymkowsky MW (2011) Snail2 controls mesodermal BMP/Wnt induction of neural crest. Development 138(15):3135–3145PubMedCrossRefGoogle Scholar
  12. 12.
    Khosrowshahian F, Wolanski M, Chang WY, Fujiki K, Jacobs L, Crawford MJ (2005) Lens and retina formation require expression of Pitx3 in Xenopus pre-lens ectoderm. Dev Dyn 234(3):577–589PubMedCrossRefGoogle Scholar
  13. 13.
    Zuber ME, Gestri G, Viczian AS, Barsacchi G, Harris WA (2003) Specification of the vertebrate eye by a network of eye field transcription factors. Development 130(21):5155–5167PubMedCrossRefGoogle Scholar
  14. 14.
    Rusconi S, Schaffner W (1981) Transformation of frog embryos with a rabbit beta-globin gene. Proc Natl Acad Sci USA 78(8):5051–5055PubMedCrossRefGoogle Scholar
  15. 15.
    Etkin LD, Pearman B, Ansah-Yiadom R (1987) Replication of injected DNA templates in Xenopus embryos. Exp Cell Res 169(2):468–477PubMedCrossRefGoogle Scholar
  16. 16.
    Etkin LD, Pearman B (1987) Distribution, expression and germ line transmission of exogenous DNA sequences following microinjection into Xenopus laevis eggs. Development 99(1):15–23PubMedGoogle Scholar
  17. 17.
    Gurdon JB (1962) The transplantation of nuclei between two species of Xenopus. Dev Biol 5:68–83PubMedCrossRefGoogle Scholar
  18. 18.
    Kroll KL, Amaya E (1996) Transgenic Xenopus embryos from sperm nuclear transplantations reveal FGF signaling requirements during gastrulation. Development 122(10):3173–3183PubMedGoogle Scholar
  19. 19.
    Amaya E, Kroll KL (1999) A method for generating transgenic frog embryos. Methods Mol Biol 97:393–414PubMedGoogle Scholar
  20. 20.
    Bronchain OJ, Hartley KO, Amaya E (1999) A gene trap approach in Xenopus. Curr Biol 9(20):1195–1198PubMedCrossRefGoogle Scholar
  21. 21.
    Sparrow DB, Latinkic B, Mohun TJ (2000) A simplified method of generating transgenic Xenopus. Nucleic Acids Res 28(4):E12PubMedCrossRefGoogle Scholar
  22. 22.
    Loeber J, Pan FC, Pieler T (2009) Generation of transgenic frogs. Methods Mol Biol 561:65–72PubMedCrossRefGoogle Scholar
  23. 23.
    Ogino H, McConnell WB, Grainger RM (2006) High-throughput transgenesis in Xenopus using I-SceI meganuclease. Nat Protoc 1(4):1703–1710PubMedCrossRefGoogle Scholar
  24. 24.
    Pan FC, Chen Y, Loeber J, Henningfeld K, Pieler T (2006) I-SceI meganuclease-mediated transgenesis in Xenopus. Dev Dyn 235(1):247–252PubMedCrossRefGoogle Scholar
  25. 25.
    Allen BG, Weeks DL (2005) Transgenic Xenopus laevis embryos can be generated using phiC31 integrase. Nat Methods 2(12):975–979PubMedCrossRefGoogle Scholar
  26. 26.
    Allen BG, Weeks DL (2006) Using phiC31 integrase to make transgenic Xenopus laevis embryos. Nat Protoc 1(3):1248–1257PubMedCrossRefGoogle Scholar
  27. 27.
    Sekkali B, Tran HT, Crabbe E, De Beule C, Van Roy F, Vleminckx K (2008) Chicken beta-globin insulator overcomes variegation of transgenes in Xenopus embryos. FASEB J 22(7):2534–2540PubMedCrossRefGoogle Scholar
  28. 28.
    Wetts R, Fraser SE (1991) Microinjection of fluorescent tracers to study neural cell lineages. Development Suppl 2:1–8Google Scholar
  29. 29.
    Gimlich RL, Braun J (1985) Improved fluorescent compounds for tracing cell lineage. Dev Biol 109(2):509–514PubMedCrossRefGoogle Scholar
  30. 30.
    Keller R, Tibbetts P (1989) Mediolateral cell intercalation in the dorsal, axial mesoderm of Xenopus laevis. Dev Biol 131(2):539–549PubMedCrossRefGoogle Scholar
  31. 31.
    Zernicka-Goetz M, Pines J, Ryan K, Siemering KR, Haseloff J, Evans MJ, Gurdon JB (1996) An indelible lineage marker for Xenopus using a mutated green fluorescent protein. Development 122(12):3719–3724PubMedGoogle Scholar
  32. 32.
    Itoh K, Sokol SY (2011) Polarized translocation of fluorescent proteins in Xenopus ectoderm in response to Wnt signaling. J Vis Exp (51). doi:2700 [pii]  10.3791/2700
  33. 33.
    Wolanski M, Khosrowshahian F, Kelly LE, El-Hodiri HM, Crawford MJ (2009) xArx2: an aristaless homolog that regulates brain regionalization during development in Xenopus laevis. Genesis 47(1):19–31PubMedCrossRefGoogle Scholar
  34. 34.
    Lemaire P, Darras S, Caillol D, Kodjabachian L (1998) A role for the vegetally expressed Xenopus gene Mix.1 in endoderm formation and in the restriction of mesoderm to the marginal zone. Development 125(13):2371–2380PubMedGoogle Scholar
  35. 35.
    Bayramov AV, Martynova NY, Eroshkin FM, Ermakova GV, Zaraisky AG (2004) The homeodomain-containing transcription factor X-nkx-5.1 inhibits expression of the homeobox gene Xanf-1 during the Xenopus laevis forebrain development. Mech Dev 121(12):1425–1441PubMedCrossRefGoogle Scholar
  36. 36.
    Pei W, Noushmehr H, Costa J, Ouspenskaia MV, Elkahloun AG, Feldman B (2007) An early requirement for maternal FoxH1 during zebrafish gastrulation. Dev Biol 310(1):10–22PubMedCrossRefGoogle Scholar
  37. 37.
    Sive H, Grainger RM, Harland RM (2000) Early development of Xenopus laevis. A laboratory outline, 1st edn. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  38. 38.
    Drysdale TA, Elinson RP (1991) Development of the Xenopus laevis hatching gland and its relationship to surface ectoderm patterning. Development 111:469–478PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2014

Authors and Affiliations

  • Cristine Smoczer
    • 1
  • Lara Hooker
    • 1
  • Saqib S. Sachani
    • 1
  • Michael J. Crawford
    • 1
  1. 1.Biological SciencesUniversity of WindsorWindsorCanada

Personalised recommendations