Skip to main content

Proteotyping of Holm Oak (Quercus ilex subsp. ballota) Provenances Through Proteomic Analysis of Acorn Flour

  • Protocol
  • First Online:
Plant Proteomics

Abstract

Proteomics has become a powerful tool to characterize biodiversity and natural variability in plant species, as well as to catalogue and establish phylogenetic relationships and distances among populations, provenances or ecotypes. In this chapter, we describe the standard proteomics workflow that we currently use in cataloguing Holm oak (Quercus ilex subsp. ballota [Desf.] Samp.) populations. Proteins are extracted from acorn flour or pollen by TCA/acetone or TCA/acetone-phenol methods, resolved by one- or two-dimensional gel electrophoresis, and gel images are captured and analyzed by appropriate software and statistical packages. Quantitative or qualitative variable bands or spots are subjected to MS analysis in order to identify them and correlate differences in the protein profile with the phenotypes or environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bahrman N, Petit RJ (1995) Genetic polymorphism in maritime pine (Pinus pinaster Ait.) assessed by two-dimensional gel electrophoresis of needle, bud, and pollen proteins. J Mol Evol 41:231–237

    Article  CAS  Google Scholar 

  2. Basha SM (1979) Identification of cultivar differences in seed polypeptide composition of peanuts (Arachis hypogaea L.) by two-dimensional polyacrylamide gel electrophoresis. Plant Physiol 63:301–306

    Article  PubMed  CAS  Google Scholar 

  3. Chevalier F, Martin O, Rofidal V et al (2004) Proteomic investigation of natural variation between Arabidopsis ecotypes. Proteomics 4:1372–1381

    Article  PubMed  CAS  Google Scholar 

  4. Emre I (2009) Electrophoretic analysis of some Lathyrus L. species based on seed storage proteins. Genet Resour Crop Evol 56:31–38

    Article  Google Scholar 

  5. Jacobsen S, Nesic L, Petersen M et al (2001) Classification of wheat varieties: use of two-dimensional gel electrophoresis for varieties that can not be classified by matrix assisted laser desorpiton/ionization-time of flight-mass spectrometry and an artificial neural network. Electrophoresis 22:1242–1245

    Article  PubMed  CAS  Google Scholar 

  6. Ostergaard O, Melchior S, Roepstorff P et al (2002) Initial proteome analysis of mature barley seeds and malt. Proteomics 2:733–739

    Article  PubMed  CAS  Google Scholar 

  7. Singh N, Matta N (2008) Variation studies on seed storage proteins and phylogenetics of the genus Cucumis. Plant Syst Evol 275:209–218

    Article  CAS  Google Scholar 

  8. Yüzbaşioğlu E, Açik L, Özcan S (2008) Seed protein diversity among lentil cultivars. Biol Plantarum 52:126–128

    Article  Google Scholar 

  9. Cánovas FM, Dumas-Gaudot E, Recorbet G et al (2004) Plant proteome analysis. Proteomics 4:285–298

    Article  PubMed  Google Scholar 

  10. Jorrín JV, Maldonado AM, Castillejo MA (2007) Plant proteome analysis: a 2006 update. Proteomics 7:2947–2962

    Article  PubMed  Google Scholar 

  11. Jorrín-Novo JV, Maldonado AM, Echevarría-Zomeño S et al (2009) Plant proteomics update (2007–2008): second-generation proteomic techniques, an appropriate experimental design, and data analysis to fulfill MIAPE standards, increase plant proteome coverage and expand biological knowledge. J Proteomics 72:285–314

    Article  PubMed  Google Scholar 

  12. Hunt SM, Thomas MR, Sebastian LT et al (2005) Optimal replication and the importance of experimental design for gel-based quantitative proteomics. J Proteome Res 4:809–819

    Article  PubMed  CAS  Google Scholar 

  13. Maldonado AM, Echevarría-Zomeño S, Jean-Baptiste S et al (2008) Evaluation of three different protocols of protein extraction for Arabidopsis thaliana leaf proteome analysis by two-dimensional electrophoresis. J Proteomics 71:461–472

    Article  PubMed  CAS  Google Scholar 

  14. Damerval C, De Vienne D, Zivy M et al (1986) Technical improvements in two-dimensional electrophoresis increase the level of genetic variation detected in wheat-seedling proteins. Electrophoresis 7:52–54

    Article  CAS  Google Scholar 

  15. Valero GJ, Valledor L, Navarro CRM et al (2011) Studies of variability in Holm oak (Quercus ilex subsp. ballota [Desf.] Samp.) through acorn protein profile analysis. J Proteomics 74:1244–1255

    Article  Google Scholar 

  16. Valero GJ, Valledor L, Fernández GR et al (2012) Proteomic analysis of Holm oak (Quercus ilex subsp. ballota [Desf.] Samp.) pollen. J Proteomics 75:2736–2744

    Article  Google Scholar 

  17. Wang W, Vignani R, Scali M et al (2006) A universal and rapid protocol for protein extraction from recalcitrant plant tissues for proteomic analysis. Electrophoresis 27:2782–2786

    Article  PubMed  CAS  Google Scholar 

  18. Jorrin JV, Maldonado AM, Castillejo MA (2007) Plant proteome analysis: a 2006 update. Proteomics 7:2947–2962

    Article  PubMed  CAS  Google Scholar 

  19. Jorrín-Novo JV, Maldonado AM, Echevarría-Zomeño S et al (2009) Plant proteomics update (2007–2008): second-generation proteomic techniques, an appropriate experimental design, and data analysis to fulfill MIAPE standards, increase plant proteome coverage and expand biological knowledge. J Proteomics 72:285–314

    Article  PubMed  Google Scholar 

  20. Supek F, Peharec P, Krsnik-Rasol M et al (2008) Enhanced analytical power of SDS-PAGE using machine learning algorithms. Proteomics 8:28–31

    Article  PubMed  CAS  Google Scholar 

  21. Petit RJ, Bahrman N, Baradat PH (1995) Comparison of genetic differentiation in maritime pine (Pinus pinaster Ait.) estimated using isozyme, total protein and terpenic loci. Heredity 75:382–389

    Article  CAS  Google Scholar 

  22. Vienne DD, Burstin J, Gerber S et al (1996) Two-dimensional electrophoresis of proteins as a source of monogenic and codominant markers for population genetics and mapping the expressed genome. Heredity 76:166–177

    Article  Google Scholar 

  23. Mathesius U, Keijzers G, Natera SH et al (2001) Establishment of a root proteome reference map for the model legume Medicago truncatula using the expressed sequence tag database for peptide mass fingerprinting. Proteomics 1:1424–1440

    Article  PubMed  CAS  Google Scholar 

  24. Matthias B, Michael MF, Kolbe M et al (2007) The state of the art in the analysis of two-dimensional gel electrophoresis images. Appl Microbiol Biotechnol 76:1223–1243

    Article  Google Scholar 

  25. Chich JF, David O, Villers F (2007) Statistics for proteomics: experimental design and 2-DE differential analysis. J Chromatogr B 849:261–272

    Article  CAS  Google Scholar 

  26. Rodríguez-Piñeiro AM, Rodríguez-Berrocal FJ, Páez de la Cadena M (2007) Improvements in the search for potential biomarkers by proteomics: application of principal component and discriminant analyses for two-dimensional maps evaluation. J Chromatogr 849:251–260

    Google Scholar 

  27. Grove H, Jørgensen BM, Jessen F (2008) Combination of statistical approaches for analysis of 2-DE data gives complementary results. J Proteome Res 7:5119–5124

    Article  PubMed  CAS  Google Scholar 

  28. Valledor L, Jorrín J (2011) Maximizing the information obtained by quantitative two dimensional gel electrophoresis analyses by an appropriate experimental design and statistical analyses. J Proteomics 74:1–18

    Article  PubMed  CAS  Google Scholar 

  29. Domon B, Aebersold R (2006) Mass spectrometry and protein analysis. Science 312:212–217

    Article  PubMed  CAS  Google Scholar 

  30. Han X, Aslanian A, Yates IJR (2008) Mass spectrometry for proteomics. Curr Opin Chem Biol 12:483–490

    Article  PubMed  CAS  Google Scholar 

  31. Jorge I, Navarro RM, Lenz C et al (2005) The holm oak leaf proteome: analytical and biological variability in the protein expression level assessed by 2-DE and protein identification tandem mass spectrometry de novo sequencing and sequence similarity searching. Proteomics 5:222–234

    Article  PubMed  CAS  Google Scholar 

  32. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  33. Gorg A, Postel W, Baumer M et al (1992) Two-dimensional polyacrylamide gel electrophoresis, with immobilized pH gradients in the first dimension, of barley seed proteins: discrimination of cultivars with different malting grades. Electrophoresis 13:192–203

    Article  PubMed  CAS  Google Scholar 

  34. Valledor L, Jorrin J (2010) Back to the basics: maximizing the information obtained by quantitative two dimensional gel electrophoresis analyses by an appropriate experimental design and statistical analyses. J Proteomics 74:1–18

    Article  PubMed  Google Scholar 

  35. Valero GJ, Jorrín-Novo J, Gómez CA et al (2011) Population variability based on the morphometry and chemical composition of the acorn in Holm oak (Quercus ilex subsp. ballota [Desf.] Samp.). Eur J Forest Res 131:893–904

    Article  Google Scholar 

Download references

Acknowledgments

Jose Valero was recipient of an Alban Program fellowship (I06D00010MX). This work was supported by the Spanish Ministry of Science and Innovation cofinanced by the European Community FEDER funds: CGL2008-04503-C03-01/BOS, AGL2002-00530, and AGL2009-12243-C02-02; the Regional Government of Andalusia (Junta de Andalucía; the University of Córdoba (AGR-0164: Agricultural and Plant Biochemistry and Proteomics Research Group)); and the Autonomous University of Juarez City.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Galván, J.V., Fernández, R.G., Valledor, L., Cerrillo, R.M.N., Jorrin-Novo, J.V. (2014). Proteotyping of Holm Oak (Quercus ilex subsp. ballota) Provenances Through Proteomic Analysis of Acorn Flour. In: Jorrin-Novo, J., Komatsu, S., Weckwerth, W., Wienkoop, S. (eds) Plant Proteomics. Methods in Molecular Biology, vol 1072. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-631-3_49

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-631-3_49

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-630-6

  • Online ISBN: 978-1-62703-631-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics