Skip to main content

Functional Analysis of Legume Genome Arrays

  • Protocol
  • First Online:
Legume Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1069))

Abstract

Functional analysis of post-genomics data is essential to identify the biological processes involved in a given investigation. Although most of the ontological tools available are limited to organisms with well-annotated genomes, this chapter provides an overview of two complementary tools—MapMan and GeneBins/PathExpress—that are used to perform a functional analysis of legume gene expression data. MapMan is a stand-alone tool that displays large datasets onto diagrams of metabolic pathways or other processes. Although initially developed for Arabidopsis thaliana, MapMan can be extended to other plants by assigning new sequences to their orthologs in the current classification. GeneBins and PathExpress have been developed to perform enrichment analysis of functional groups and metabolic networks, respectively. Based on the KEGG database, these tools can be used with any organism, including the main reference legumes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM et al (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25–29. doi:10.1038/75556

    Article  PubMed  CAS  Google Scholar 

  2. Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M (2012) KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 40:D109–D114. doi:10.1093/nar/gkr988, Database issue

    Article  PubMed  CAS  Google Scholar 

  3. da Huang W, Sherman BT, Lempicki RA (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37:1–13. doi:10.1093/nar/gkn923

    Article  Google Scholar 

  4. Khatri P, Sirota M, Butte AJ (2012) Ten years of pathway analysis: current approaches and outstanding challenges. PLoS Comput Biol 8:e1002375. doi:10.1371/journal.pcbi.1002375

    Article  PubMed  CAS  Google Scholar 

  5. Bebek G, Koyuturk M, Price ND, Chance MR (2012) Network biology methods integrating biological data for translational science. Brief Bioinform 13:446–459. doi:10.1093/bib/bbr075

    Article  PubMed  Google Scholar 

  6. Usadel B, Nagel A, Thimm O, Redestig H, Blaesing OE, Palacios-Rojas N et al (2005) Extension of the visualization tool MapMan to allow statistical analysis of arrays, display of corresponding genes, and comparison with known responses. Plant Physiol 138:1195–1204. doi:10.1104/pp. 105.060459

    Article  PubMed  CAS  Google Scholar 

  7. Thimm O, Blasing O, Gibon Y, Nagel A, Meyer S, Kruger P et al (2004) MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J 37:914–939

    Article  PubMed  CAS  Google Scholar 

  8. Doehlemann G, Wahl R, Horst RJ, Voll LM, Usadel B, Poree F et al (2008) Reprogramming a maize plant: transcriptional and metabolic changes induced by the fungal biotroph Ustilago maydis. Plant J 56:181–195. doi:10.1111/j.1365-313X.2008.03590.x

    Article  PubMed  CAS  Google Scholar 

  9. Tellstrom V, Usadel B, Thimm O, Stitt M, Kuster H, Niehaus K (2007) The lipopolysaccharide of Sinorhizobium meliloti suppresses defense-associated gene expression in cell cultures of the host plant Medicago truncatula. Plant Physiol 143:825–837. doi:10.1104/pp. 106.090985

    Article  PubMed  Google Scholar 

  10. Betti M, Pérez-Delgado C, García-Calderón M, Díaz P, Monza J, Márquez A (2012) Cellular stress following water deprivation in the model legume Lotus japonicus. Cells 1:1089–1106

    Article  CAS  Google Scholar 

  11. Urbanczyk-Wochniak E, Usadel B, Thimm O, Nunes-Nesi A, Carrari F, Davy M et al (2006) Conversion of MapMan to allow the analysis of transcript data from solanaceous species: effects of genetic and environmental alterations in energy metabolism in the leaf. Plant Mol Biol 60:773–792. doi:10.1007/s11103-005-5772-4

    Article  PubMed  CAS  Google Scholar 

  12. Rotter A, Usadel B, Baebler S, Stitt M, Gruden K (2007) Adaptation of the MapMan ontology to biotic stress responses: application in solanaceous species. Plant Methods 3:10. doi:10.1186/1746-4811-3-10

    Article  PubMed  Google Scholar 

  13. Rotter A, Camps C, Lohse M, Kappel C, Pilati S, Hren M et al (2009) Gene expression profiling in susceptible interaction of grapevine with its fungal pathogen Eutypa lata: extending MapMan ontology for grapevine. BMC Plant Biol 9:104. doi:10.1186/1471-2229-9-104

    Article  PubMed  Google Scholar 

  14. Martinelli F, Uratsu SL, Albrecht U, Reagan RL, Phu ML, Britton M et al (2012) Transcriptome profiling of citrus fruit response to huanglongbing disease. PLoS One 7:e38039. doi:10.1371/journal.pone.0038039

    Article  PubMed  CAS  Google Scholar 

  15. Goffard N, Weiller GF (2006) Extending MapMan: application to legume genome arrays. Bioinformatics 22:2958–2959. doi:10.1093/bioinformatics/btl517

    Article  PubMed  CAS  Google Scholar 

  16. Goffard N, Weiller GF (2007) GeneBins: a database for classifying gene expression data, with application to plant genome arrays. BMC Bioinformatics 8:87. doi:10.1186/1471-2105-8-87

    Article  PubMed  Google Scholar 

  17. UniProt C (2012) Reorganizing the protein space at the Universal Protein Resource (UniProt). Nucleic Acids Res 40:D71–D75. doi:10.1093/nar/gkr981, Database issue

    Article  Google Scholar 

  18. Goffard N, Frickey T, Weiller GF (2009) PathExpress update: the enzyme neighbourhood method of associating gene-expression data with metabolic pathways. Nucleic Acids Res 37:W335–W339. doi:10.1093/nar/gkp432, Web server issue

    Article  PubMed  CAS  Google Scholar 

  19. Goffard N, Weiller GF (2007) PathExpress: a web-based tool to identify relevant pathways in gene expression data. Nucleic Acids Res 35:W176–W181. doi:10.1093/nar/gkm261, Web server issue

    Article  PubMed  Google Scholar 

  20. He J, Benedito VA, Wang M, Murray JD, Zhao PX, Tang Y, Udvardi MK (2009) The Medicago truncatula gene expression atlas web server. BMC Bioinformatics 10:441. doi:10.1186/1471-2105-10-441

    Article  PubMed  Google Scholar 

  21. Li D, Su Z, Dong J, Wang T (2009) An expression database for roots of the model legume Medicago truncatula under salt stress. BMC Genomics 10:517. doi:10.1186/1471-2164-10-517

    Article  PubMed  Google Scholar 

  22. Imin N, Goffard N, Nizamidin M, Rolfe BG (2008) Genome-wide transcriptional analysis of super-embryogenic Medicago truncatula explant cultures. BMC Plant Biol 8:110. doi:10.1186/1471-2229-8-110

    Article  PubMed  Google Scholar 

  23. van Noorden GE, Kerim T, Goffard N, Wiblin R, Pellerone FI, Rolfe BG, Mathesius U (2007) Overlap of proteome changes in Medicago truncatula in response to auxin and Sinorhizobium meliloti. Plant Physiol 144:1115–1131. doi:10.1104/pp. 107.099978

    Article  PubMed  Google Scholar 

  24. Hogslund N, Radutoiu S, Krusell L, Voroshilova V, Hannah MA, Goffard N et al (2009) Dissection of symbiosis and organ development by integrated transcriptome analysis of Lotus japonicus mutant and wild-type plants. PLoS One 4:e6556. doi:10.1371/journal.pone.0006556

    Article  PubMed  Google Scholar 

  25. Nautrup-Pedersen G, Dam S, Laursen BS, Siegumfeldt AL, Nielsen K, Goffard N et al (2010) Proteome analysis of pod and seed development in the model legume Lotus japonicus. J Proteome Res 9:5715–5726. doi:10.1021/pr100511u

    Article  PubMed  CAS  Google Scholar 

  26. Mathesius U, Djordjevic MA, Oakes M, Goffard N, Haerizadeh F, Weiller GF et al (2011) Comparative proteomic profiles of the soybean (Glycine max) root apex and differentiated root zone. Proteomics 11:1707–1719. doi:10.1002/pmic.201000619

    Article  PubMed  CAS  Google Scholar 

  27. Chen S, Li XQ, Zhao A, Wang L, Li X, Shi Q, Chen M, Guo J et al (2009) Genes and pathways induced in early response to defoliation in rice seedlings. Curr Issues Mol Biol 11:81–100

    PubMed  CAS  Google Scholar 

  28. Hernandez G, Valdes-Lopez O, Ramirez M, Goffard N, Weiller GF, Aparicio-Fabre R et al (2009) Global changes in the transcript and metabolic profiles during symbiotic nitrogen fixation in phosphorus-stressed common bean plants. Plant Physiol 151:1221–1238. doi:10.1104/pp. 109.143842

    Article  PubMed  CAS  Google Scholar 

  29. Zhu A, Li W, Ye J, Sun X, Ding Y, Cheng Y, Deng X (2011) Microarray expression profiling of postharvest Ponkan mandarin (Citrus reticulata) fruit under cold storage reveals regulatory gene candidates and implications on soluble sugars metabolism. J Integr Plant Biol 53:358–374. doi:10.1111/j.1744-7909.2011.01035.x

    Article  PubMed  CAS  Google Scholar 

  30. Bay LK, Ulstrup KE, Nielsen HB, Jarmer H, Goffard N, Willis BL et al (2009) Microarray analysis reveals transcriptional plasticity in the reef building coral Acropora millepora. Mol Ecol 18:3062–3075. doi:10.1111/j.1365-294X.2009.04257.x

    Article  PubMed  CAS  Google Scholar 

  31. Bal G, Kamhieh-Milz J, Futschik M, Haupl T, Salama A, Moldenhauer A (2012) Transcriptional profiling of the hematopoietic support of interleukin-stimulated human umbilical vein endothelial cells (HUVECs). Cell Transplant 21:251–267. doi:10.3727/096368911X580581

    PubMed  Google Scholar 

  32. Vardhanabhuti S, Blakemore SJ, Clark SM, Ghosh S, Stephens RJ, Rajagopalan D (2006) A comparison of statistical tests for detecting differential expression using Affymetrix oligonucleotide microarrays. OMICS 10:555–566. doi:10.1089/omi.2006.10.555

    Article  PubMed  CAS  Google Scholar 

  33. Jiao X, Sherman BT, da Huang W, Stephens R, Baseler MW, Lane HC, Lempicki RA (2012) DAVID-WS: a stateful web service to facilitate gene/protein list analysis. Bioinformatics 28:1805–1806. doi:10.1093/bioinformatics/bts251

    Article  PubMed  CAS  Google Scholar 

  34. Bonferroni CE (1936) Teoria statistica delle classi e calcolo delle probabilità. Pubblicazioni del Regio Istituto Superiore di Scienze Economiche e Commerciali di Firenze 8:3–62

    Google Scholar 

  35. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57:289–300

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Goffard, N., Weiller, G. (2013). Functional Analysis of Legume Genome Arrays. In: Rose, R. (eds) Legume Genomics. Methods in Molecular Biology, vol 1069. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-613-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-613-9_5

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-612-2

  • Online ISBN: 978-1-62703-613-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics