Advertisement

Proteomic Analysis of the Left Ventricle Post-myocardial Infarction to Identify In Vivo Candidate Matrix Metalloproteinase Substrates

  • Andriy Yabluchanskiy
  • Yaojun Li
  • Lisandra E. de Castro Brás
  • Kevin Hakala
  • Susan T. Weintraub
  • Merry L. Lindsey
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1066)

Abstract

Left ventricular remodeling post-myocardial infarction (MI) involves a multitude of mechanisms that regulate the repair response. Matrix metalloproteinases (MMPs) are a major family of proteolytic enzymes that coordinate extracellular matrix turnover. MMP-7 or MMP-9 deletion attenuate adverse remodeling post-MI, but the mechanisms have not been fully clarified. Both MMP-7 and MMP-9 have a large number of known in vitro substrates, but in vivo substrates for these two MMPs in the myocardial infarction setting are incompletely identified. Advances in proteomic techniques have enabled comprehensive profiling of protein expression in cells and tissue. In this chapter, we describe a protocol for the proteomic analysis of in vivo candidate MMP substrates in the post-MI left ventricle using two-dimensional electrophoresis, liquid chromatography coupled with tandem mass spectrometry, and immunoblotting.

Key words

Proteomics Cardiac remodeling Mice Extracellular matrix Matrix metalloproteinase Myocardial infarction Substrates 

Notes

Acknowledgments

We acknowledge support from NIH/NHLBI HHSN 268201000036C (N01-HV-00244) for the San Antonio Cardiovascular Proteomics Center and R01 HL075360, the Max and Minnie Tomerlin Voelcker Fund, and the Veteran’s Administration (Merit) to M.L.L. Mass spectrometry analyses were conducted in the UTHSCSA Institutional Mass Spectrometry Laboratory.

References

  1. 1.
    Dixon JA, Spinale FG (2011) Myocardial remodeling: cellular and extracellular events and targets. Annu Rev Physiol 73:47–68PubMedCrossRefGoogle Scholar
  2. 2.
    Lindsey ML, Weintraub ST, Lange RA (2012) Using extracellular matrix proteomics to understand left ventricular remodeling. Circ Cardiovasc Genet 5:o1–7PubMedCrossRefGoogle Scholar
  3. 3.
    Gajarsa JJ, Kloner RA (2011) Left ventricular remodeling in the post-infarction heart: a review of cellular, molecular mechanisms, and therapeutic modalities. Heart Fail Rev 16:13–21PubMedCrossRefGoogle Scholar
  4. 4.
    Page-McCaw A, Ewald AJ, Werb Z (2007) Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol 8:221–233PubMedCrossRefGoogle Scholar
  5. 5.
    Kandalam V, Basu R, Abraham T et al (2010) Early activation of matrix metalloproteinases underlies the exacerbated systolic and diastolic dysfunction in mice lacking TIMP3 following myocardial infarction. Am J Physiol Heart Circ Physiol 299:H1012–1023PubMedCrossRefGoogle Scholar
  6. 6.
    Lindsey ML, Zamilpa R (2012) Temporal and spatial expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases following myocardial infarction. Cardiovasc Ther 30:31–41PubMedCrossRefGoogle Scholar
  7. 7.
    Lindsey ML, Escobar GP, Dobrucki LW et al (2006) Matrix metalloproteinase-9 gene deletion facilitates angiogenesis after myocardial infarction. Am J Physiol Heart Circ Physiol 290:H232–239PubMedCrossRefGoogle Scholar
  8. 8.
    Lindsey ML, Escobar GP, Mukherjee R et al (2006) Matrix metalloproteinase-7 affects connexin-43 levels, electrical conduction, and survival after myocardial infarction. Circulation 113:2919–2928PubMedCrossRefGoogle Scholar
  9. 9.
    Agnihotri R, Crawford HC, Haro H et al (2001) Osteopontin, a novel substrate for matrix metalloproteinase-3 (stromelysin-1) and matrix metalloproteinase-7 (matrilysin). J Biol Chem 276:28261–28267PubMedCrossRefGoogle Scholar
  10. 10.
    Siri A, Knauper V, Veirana N et al (1995) Different susceptibility of small and large human tenascin-C isoforms to degradation by matrix metalloproteinases. J Biol Chem 270:8650–8654PubMedCrossRefGoogle Scholar
  11. 11.
    von Bredow DC, Nagle RB, Bowden GT et al (1995) Degradation of fibronectin fibrils by matrilysin and characterization of the degradation products. Exp Cell Res 221:83–91CrossRefGoogle Scholar
  12. 12.
    Imai K, Yokohama Y, Nakanishi I et al (1995) Matrix metalloproteinase 7 (matrilysin) from human rectal carcinoma cells. Activation of the precursor, interaction with other matrix metalloproteinases and enzymic properties. J Biol Chem 270:6691–6697PubMedCrossRefGoogle Scholar
  13. 13.
    Lee KH, Choi EY, Hyun MS et al (2007) Association of extracellular cleavage of E-cadherin mediated by MMP-7 with HGF-induced in vitro invasion in human stomach cancer cells. Eur Surg Res 39:208–215PubMedCrossRefGoogle Scholar
  14. 14.
    Belaaouaj AA, Li A, Wun TC et al (2000) Matrix metalloproteinases cleave tissue factor pathway inhibitor. Effects on coagulation. J Biol Chem 275:27123–27128PubMedGoogle Scholar
  15. 15.
    Crabbe T, Smith B, O'Connell J et al (1994) Human progelatinase A can be activated by matrilysin. FEBS Lett 345:14–16PubMedCrossRefGoogle Scholar
  16. 16.
    Trocme C, Gaudin P, Berthier S et al (1998) Human B lymphocytes synthesize the 92-kDa gelatinase, matrix metalloproteinase-9. J Biol Chem 273:20677–20684PubMedCrossRefGoogle Scholar
  17. 17.
    Birkedal-Hansen H (1995) Proteolytic remodeling of extracellular matrix. Curr Opin Cell Biol 7:728–735PubMedCrossRefGoogle Scholar
  18. 18.
    Visse R, Nagase H (2003) Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res 92:827–839PubMedCrossRefGoogle Scholar
  19. 19.
    Tan RJ, Liu Y (2012) Matrix metalloproteinases in kidney homeostasis and diseases. Am J Physiol Ren Physiol 302:F1351–1361CrossRefGoogle Scholar
  20. 20.
    Yu Q, Stamenkovic I (2000) Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev 14:163–176PubMedGoogle Scholar
  21. 21.
    McCawley LJ, Matrisian LM (2001) Matrix metalloproteinases: they're not just for matrix anymore! Curr Opin Cell Biol 13:534–540PubMedCrossRefGoogle Scholar
  22. 22.
    Zamilpa R, Lopez EF, Chiao YA et al (2010) Proteomic analysis identifies in vivo candidate matrix metalloproteinase-9 substrates in the left ventricle post-myocardial infarction. Proteomics 10:2214–2223PubMedCrossRefGoogle Scholar
  23. 23.
    Chiao YA, Zamilpa R, Lopez EF et al (2010) In vivo matrix metalloproteinase-7 substrates identified in the left ventricle post-myocardial infarction using proteomics. J Proteome Res 9:2649–2657PubMedCrossRefGoogle Scholar
  24. 24.
    Haro H, Crawford HC, Fingleton B et al (2000) Matrix metalloproteinase-7-dependent release of tumor necrosis factor-alpha in a model of herniated disc resorption. J Clin Invest 105:143–150PubMedCrossRefGoogle Scholar
  25. 25.
    Acuff HB, Carter KJ, Fingleton B et al (2006) Matrix metalloproteinase-9 from bone marrow-derived cells contributes to survival but not growth of tumor cells in the lung microenvironment. Cancer Res 66:259–266PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, New York 2013

Authors and Affiliations

  • Andriy Yabluchanskiy
    • 1
    • 2
    • 3
  • Yaojun Li
    • 1
    • 2
    • 3
  • Lisandra E. de Castro Brás
    • 1
    • 2
    • 3
  • Kevin Hakala
    • 4
  • Susan T. Weintraub
    • 4
  • Merry L. Lindsey
    • 5
  1. 1.San Antonio Cardiovascular Proteomics CenterThe University of Texas Health Science CenterSan AntonioUSA
  2. 2.Barshop Institute for Longevity and Aging StudiesThe University of Texas Health Science CenterSan AntonioUSA
  3. 3.Division of Geriatrics, Gerontology and Palliative Medicine, Department of MedicineThe University of Texas Health Science CenterSan AntonioUSA
  4. 4.Department of Biochemistry, San Antonio Cardiovascular Proteomics CenterThe University of Texas Health Science CenterSan AntonioUSA
  5. 5.Department of Physiology and BiophysicsUniversity of Mississippi Medical CenterJacksonUSA

Personalised recommendations