Skip to main content

Methods for Conjugating Antibodies to Nanocarriers

  • Protocol
  • First Online:
Antibody-Drug Conjugates

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1045))

Abstract

Antibodies are one of the most commonly used targeting ligands for nanocarriers, mainly because they are specific, have a strong binding affinity, and are available for a number of disease biomarkers. The bioconjugation chemistry can be a crucial factor in determining the targeting efficiency of drug delivery and should be chosen on a case-by-case basis. An antibody consists of a number of functional groups which offer many flexible options for bioconjugation. This chapter focuses on discussing some of the approaches including periodate oxidation, carbodiimide, maleimide, and heterofunctional linkers, for conjugating antibodies to different nanocarriers. The advantages and limitations are described herein. Specific examples are selected to demonstrate the experimental procedures and to illustrate the potential for applying to other nanocarrier system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schroeder A, Heller DA, Winslow MM, Dahlman JE, Pratt GW, Langer R, Jacks T, Anderson DG (2012) Treating metastatic cancer with nanotechnology. Nat Rev Cancer 12:39–50

    Article  CAS  Google Scholar 

  2. Arias JL (2011) Advanced methodologies to formulate nanotheragnostic agents for combined drug delivery and imaging. Expert Opin Drug Deliv 8:1589–1608

    Article  PubMed  CAS  Google Scholar 

  3. Alexis F, Pridgen E, Molnar LK, Farokhzad OC (2008) Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm 5:505–515

    Article  PubMed  CAS  Google Scholar 

  4. Li SD, Huang L (2008) Pharmacokinetics and biodistribution of nanoparticles. Mol Pharm 5:496–504

    Article  PubMed  CAS  Google Scholar 

  5. Al-Jamal WT, Kostarelos K (2011) Liposomes: from a clinically established drug delivery system to a nanoparticle platform for theranostic nanomedicine. Acc Chem Res 44:1094–1104

    Article  PubMed  CAS  Google Scholar 

  6. Kedar U, Phutane P, Shidhaye S, Kadam V (2010) Advances in polymeric micelles for drug delivery and tumor targeting. Nanomedicine 6:714–729

    Article  PubMed  CAS  Google Scholar 

  7. Shi J, Votruba AR, Farokhzad OC, Langer R (2010) Nanotechnology in drug delivery and tissue engineering: from discovery to applications. Nano Lett 10:3223–3230

    Article  PubMed  CAS  Google Scholar 

  8. Svenson S (2009) Dendrimers as versatile platform in drug delivery applications. Eur J Pharm Biopharm 71:445–462

    Article  PubMed  CAS  Google Scholar 

  9. Levine DH, Ghoroghchian PP, Freudenberg J, Zhang G, Therien MJ, Greene MI, Hammer DA, Murali R (2008) Polymersomes: a new multi-functional tool for cancer diagnosis and therapy. Methods 46:25–32

    Article  PubMed  CAS  Google Scholar 

  10. Farokhzad OC, Cheng J, Teply BA, Sherifi I, Jon S, Kantoff PW, Richie JP, Langer R (2006) Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc Natl Acad Sci USA 103:6315–6320

    Article  PubMed  CAS  Google Scholar 

  11. Dhar S, Kolishetti N, Lippard SJ, Farokhzad OC (2011) Targeted delivery of a cisplatin prodrug for safer and more effective prostate cancer therapy in vivo. Proc Natl Acad Sci USA 108:1850–1855

    Article  PubMed  CAS  Google Scholar 

  12. Chan JM, Zhang L, Tong R, Ghosh D, Gao W, Liao G, Yuet KP, Gray D, Rhee JW, Cheng J, Golomb G, Libby P, Langer R, Farokhzad OC (2010) Spatiotemporal controlled delivery of nanoparticles to injured vasculature. Proc Natl Acad Sci USA 107:2213–2218

    Article  PubMed  CAS  Google Scholar 

  13. Chan JM, Rhee JW, Drum CL, Bronson RT, Golomb G, Langer R, Farokhzad OC (2011) In vivo prevention of arterial restenosis with paclitaxel-encapsulated targeted lipid-polymeric nanoparticles. Proc Natl Acad Sci USA 108:19347–19352

    Article  PubMed  CAS  Google Scholar 

  14. Thomas TP, Goonewardena SN, Majoros IJ, Kotlyar A, Cao Z, Leroueil PR, Baker JR Jr (2011) Folate-targeted nanoparticles show efficacy in the treatment of inflammatory arthritis. Arthritis Rheum 63:2671–2680

    Article  PubMed  CAS  Google Scholar 

  15. Bosch X (2011) Dendrimers to treat rheumatoid arthritis. ACS Nano 5:6779–6785

    Article  PubMed  CAS  Google Scholar 

  16. Maeda H, Fang J, Inutsuka T, Kitamoto Y (2003) Vascular permeability enhancement in solid tumor: various factors, mechanisms involved and its implications. Int Immunopharmacol 3:319–328

    Article  PubMed  CAS  Google Scholar 

  17. Hobbs SK, Monsky WL, Yuan F, Roberts WG, Griffith L, Torchilin VP, Jain RK (1998) Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci USA 95:4607–4612

    Article  PubMed  CAS  Google Scholar 

  18. Bae YH (2009) Drug targeting and tumor heterogeneity. J Control Release 133:2–3

    Article  PubMed  CAS  Google Scholar 

  19. Northfelt DW, Dezube BJ, Thommes JA, Miller BJ, Fischl MA, Friedman-Kien A, Kaplan LD, Du Mond C, Mamelok RD, Henry DH (1998) Pegylated-liposomal doxorubicin versus doxorubicin, bleomycin, and vincristine in the treatment of AIDS-related Kaposi’s sarcoma: results of a randomized phase III clinical trial. J Clin Oncol 16:2445–2451

    PubMed  CAS  Google Scholar 

  20. Gradishar WJ, Tjulandin S, Davidson N, Shaw H, Desai N, Bhar P, Hawkins M, O’Shaughnessy J (2005) Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer. J Clin Oncol 23:7794–7803

    Article  PubMed  CAS  Google Scholar 

  21. Mamot C, Drummond DC, Noble CO, Kallab V, Guo Z, Hong K, Kirpotin DB, Park JW (2005) Epidermal growth factor receptor-targeted immunoliposomes significantly enhance the efficacy of multiple anticancer drugs in vivo. Cancer Res 65:11631–11638

    Article  PubMed  CAS  Google Scholar 

  22. Srinivasan R, Marchant RE, Gupta AS (2009) In vitro and in vivo platelet targeting by cyclic RGD-modified liposomes. J Biomed Mater Res A 93:1004–1015

    Google Scholar 

  23. Kukowska-Latallo JF, Candido KA, Cao Z, Nigavekar SS, Majoros IJ, Thomas TP, Balogh LP, Khan MK, Baker JR Jr (2005) Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Res 65:5317–5324

    Article  PubMed  CAS  Google Scholar 

  24. Shi J, Xiao Z, Kamaly N, Farokhzad OC (2011) Self-assembled targeted nanoparticles: evolution of technologies and bench to bedside translation. Acc Chem Res 44:1123–1134

    Article  PubMed  CAS  Google Scholar 

  25. Wang J, Tian S, Petros RA, Napier ME, Desimone JM (2010) The complex role of multivalency in nanoparticles targeting the transferrin receptor for cancer therapies. J Am Chem Soc 132:11306–11313

    Article  PubMed  CAS  Google Scholar 

  26. Manjappa AS, Chaudhari KR, Venkataraju MP, Dantuluri P, Nanda B, Sidda C, Sawant KK, Murthy RS (2011) Antibody derivatization and conjugation strategies: application in preparation of stealth immunoliposome to target chemotherapeutics to tumor. J Control Release 150:2–22

    Article  PubMed  CAS  Google Scholar 

  27. Sokolov K, Follen M, Aaron J, Pavlova I, Malpica A, Lotan R, Richards-Kortum R (2003) Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles. Cancer Res 63:1999–2004

    PubMed  CAS  Google Scholar 

  28. Nobs L, Buchegger F, Gurny R, Allemann E (2004) Current methods for attaching targeting ligands to liposomes and nanoparticles. J Pharm Sci 93:1980–1992

    Article  PubMed  CAS  Google Scholar 

  29. Arruebo M, Valladares M, González-Fernández A (2009) Antibody-conjugated nanoparticles for biomedical applications. J Nanomaterials Article ID 439389

    Google Scholar 

  30. Soga S, Kuroda D, Shirai H, Kobori M, Hirayama N (2010) Use of amino acid composition to predict epitope residues of individual antibodies. Protein Eng Des Sel 23:441–448

    Article  PubMed  CAS  Google Scholar 

  31. Simard P, Leroux JC (2009) pH-sensitive immunoliposomes specific to the CD33 cell surface antigen of leukemic cells. Int J Pharm 381:86–96

    Article  PubMed  CAS  Google Scholar 

  32. Pereira M, Lai EP (2008) Capillary electrophoresis for the characterization of quantum dots after non-selective or selective bioconjugation with antibodies for immunoassay. J Nanobiotechnol 6:10

    Article  Google Scholar 

  33. Simard P, Leroux JC (2010) In vivo evaluation of pH-sensitive polymer-based immunoliposomes targeting the CD33 antigen. Mol Pharm 7:1098–1107

    Article  PubMed  CAS  Google Scholar 

  34. Yokoyama T, Tam J, Kuroda S, Scott AW, Aaron J, Larson T, Shanker M, Correa AM, Kondo S, Roth JA, Sokolov K, Ramesh R (2011) EGFR-targeted hybrid plasmonic magnetic nanoparticles synergistically induce autophagy and apoptosis in non-small cell lung cancer cells. PLoS One 6:e25507

    Article  PubMed  CAS  Google Scholar 

  35. Jefferis R (2009) Glycosylation as a strategy to improve antibody-based therapeutics. Nat Rev Drug Discov 8:226–234

    Article  PubMed  CAS  Google Scholar 

  36. Jefferis R (2005) Glycosylation of recombinant antibody therapeutics. Biotechnol Prog 21:11–16

    Article  PubMed  CAS  Google Scholar 

  37. Kristiansen KA, Potthast A, Christensen BE (2010) Periodate oxidation of polysaccharides for modification of chemical and physical properties. Carbohydr Res 345:1264–1271

    Article  PubMed  CAS  Google Scholar 

  38. Goren D, Horowitz AT, Zalipsky S, Woodle MC, Yarden Y, Gabizon A (1996) Targeting of stealth liposomes to erbB-2 (Her/2) receptor: in vitro and in vivo studies. Br J Cancer 74:1749–1756

    Article  PubMed  CAS  Google Scholar 

  39. Hansen CB, Kao GY, Moase EH, Zalipsky S, Allen TM (1995) Attachment of antibodies to sterically stabilized liposomes: evaluation, comparison and optimization of coupling procedures. Biochim Biophys Acta 1239:133–144

    Article  PubMed  Google Scholar 

  40. Domen PL, Nevens JR, Mallia AK, Hermanson GT, Klenk DC (1990) Site-directed immobilization of proteins. J Chromatogr 510:293–302

    Article  PubMed  CAS  Google Scholar 

  41. Koning GA, Kamps JA, Scherphof GL (2002) Efficient intracellular delivery of 5-fluorodeoxyuridine into colon cancer cells by targeted immunoliposomes. Cancer Detect Prev 26:299–307

    Article  PubMed  CAS  Google Scholar 

  42. Puertas S, Batalla P, Moros M, Polo E, Del Pino P, Guisan JM, Grazu V, de la Fuente JM (2011) Taking advantage of unspecific interactions to produce highly active magnetic nanoparticle-antibody conjugates. ACS Nano 5:4521–4528

    Article  PubMed  CAS  Google Scholar 

  43. Valeur E, Bradley M (2009) Amide bond formation: beyond the myth of coupling reagents. Chem Soc Rev 38:606–631

    Article  PubMed  CAS  Google Scholar 

  44. McCarron PA, Marouf WM, Quinn DJ, Fay F, Burden RE, Olwill SA, Scott CJ (2008) Antibody targeting of camptothecin-loaded PLGA nanoparticles to tumor cells. Bioconjug Chem 19:1561–1569

    Article  PubMed  CAS  Google Scholar 

  45. Bullous AJ, Alonso CM, Boyle RW (2011) Photosensitiser-antibody conjugates for photodynamic therapy. Photochem Photobiol Sci 10:721–750

    Article  PubMed  CAS  Google Scholar 

  46. Grabarek Z, Gergely J (1990) Zero-length crosslinking procedure with the use of active esters. Anal Biochem 185:131–135

    Article  PubMed  CAS  Google Scholar 

  47. Liu Y, Li K, Liu B, Feng SS (2010) A strategy for precision engineering of nanoparticles of biodegradable copolymers for quantitative control of targeted drug delivery. Biomaterials 31:9145–9155

    Article  PubMed  CAS  Google Scholar 

  48. Acharya S, Dilnawaz F, Sahoo SK (2009) Targeted epidermal growth factor receptor nanoparticle bioconjugates for breast cancer therapy. Biomaterials 30:5737–5750

    Article  PubMed  CAS  Google Scholar 

  49. Arya G, Vandana M, Acharya S, Sahoo SK (2011) Enhanced antiproliferative activity of Herceptin (HER2)-conjugated gemcitabine-loaded chitosan nanoparticle in pancreatic cancer therapy. Nanomedicine 7:859–870

    Article  PubMed  CAS  Google Scholar 

  50. Mamot C, Drummond DC, Greiser U, Hong K, Kirpotin DB, Marks JD, Park JW (2003) Epidermal growth factor receptor (EGFR)-targeted immunoliposomes mediate specific and efficient drug delivery to EGFR- and EGFRvIII-overexpressing tumor cells. Cancer Res 63:3154–3161

    PubMed  CAS  Google Scholar 

  51. Chumsae C, Gaza-Bulseco G, Liu H (2009) Identification and localization of unpaired cysteine residues in monoclonal antibodies by fluorescence labeling and mass spectrometry. Anal Chem 81:6449–6457

    Article  PubMed  CAS  Google Scholar 

  52. Zhang W, Czupryn MJ (2002) Free sulfhydryl in recombinant monoclonal antibodies. Biotechnol Prog 18:509–513

    Article  PubMed  Google Scholar 

  53. Cohen SL, Price C, Vlasak J (2007) Beta-elimination and peptide bond hydrolysis: two distinct mechanisms of human IgG1 hinge fragmentation upon storage. J Am Chem Soc 129:6976–6977

    Article  PubMed  CAS  Google Scholar 

  54. Ji T, Muenker MC, Papineni RV, Harder JW, Vizard DL, McLaughlin WE (2010) Increased sensitivity in antigen detection with fluorescent latex nanosphere-IgG antibody conjugates. Bioconjug Chem 21:427–435

    Article  CAS  Google Scholar 

  55. Kausaite-Minkstimiene A, Ramanaviciene A, Kirlyte J, Ramanavicius A (2010) Comparative study of random and oriented antibody immobilization techniques on the binding capacity of immunosensor. Anal Chem 82:6401–6408

    Article  PubMed  CAS  Google Scholar 

  56. Humphreys DP, Heywood SP, Henry A, Ait-Lhadj L, Antoniw P, Palframan R, Greenslade KJ, Carrington B, Reeks DG, Bowering LC, West S, Brand HA (2007) Alternative antibody Fab’ fragment PEGylation strategies: combination of strong reducing agents, disruption of the interchain disulphide bond and disulphide engineering. Protein Eng Des Sel 20:227–234

    Article  PubMed  CAS  Google Scholar 

  57. Mamot C, Ritschard R, Kung W, Park JW, Herrmann R, Rochlitz CF (2006) EGFR-targeted immunoliposomes derived from the monoclonal antibody EMD72000 mediate specific and efficient drug delivery to a variety of colorectal cancer cells. J Drug Target 14:215–223

    Article  PubMed  CAS  Google Scholar 

  58. Brignole C, Marimpietri D, Gambini C, Allen TM, Ponzoni M, Pastorino F (2003) Development of Fab’ fragments of anti-GD(2) immunoliposomes entrapping doxorubicin for experimental therapy of human neuroblastoma. Cancer Lett 197:199–204

    Article  PubMed  CAS  Google Scholar 

  59. Hashimoto K, Loader JE, Kinsky SC (1986) Iodoacetylated and biotinylated liposomes: effect of spacer length on sulfhydryl ligand binding and avidin precipitability. Biochim Biophys Acta 856:556–565

    Article  PubMed  CAS  Google Scholar 

  60. Hu CM, Kaushal S, Tran Cao HS, Aryal S, Sartor M, Esener S, Bouvet M, Zhang L (2010) Half-antibody functionalized lipid-polymer hybrid nanoparticles for targeted drug delivery to carcinoembryonic antigen presenting pancreatic cancer cells. Mol Pharm 7:914–920

    Article  PubMed  CAS  Google Scholar 

  61. East DA, Mulvihill DP, Todd M, Bruce IJ (2011) QD-antibody conjugates via carbodiimide-mediated coupling: a detailed study of the variables involved and a possible new mechanism for the coupling reaction under basic aqueous conditions. Langmuir 27:13888–13896

    Article  PubMed  CAS  Google Scholar 

  62. Kozlova D, Chernousova S, Knuschke T, Buer J, Westendorf AM, Epple M (2012) Cell targeting by antibody-functionalized calcium phosphate nanoparticles. J Mater Chem 22:396–404

    Article  CAS  Google Scholar 

  63. Mercadal M, Domingo JC, Petriz J, Garcia J, de Madariaga MA (2000) Preparation of immunoliposomes bearing poly(ethylene glycol)-coupled monoclonal antibody linked via a cleavable disulfide bond for ex vivo applications. Biochim Biophys Acta 1509:299–310

    Article  PubMed  CAS  Google Scholar 

  64. Saito G, Swanson JA, Lee KD (2003) Drug delivery strategy utilizing conjugation via reversible disulfide linkages: role and site of cellular reducing activities. Adv Drug Deliv Rev 55:199–215

    Article  PubMed  CAS  Google Scholar 

  65. Jue R, Lambert JM, Pierce LR, Traut RR (1978) Addition of sulfhydryl groups to Escherichia coli ribosomes by protein modification with 2-iminothiolane (methyl 4-mercaptobutyrimidate). Biochemistry 17:5399–5406

    Article  PubMed  CAS  Google Scholar 

  66. Anhorn MG, Wagner S, Kreuter J, Langer K, von Briesen H (2008) Specific targeting of HER2 overexpressing breast cancer cells with doxorubicin-loaded trastuzumab-modified human serum albumin nanoparticles. Bioconjug Chem 19:2321–2331

    Article  PubMed  CAS  Google Scholar 

  67. Badiee A, Davies N, McDonald K, Radford K, Michiue H, Hart D, Kato M (2007) Enhanced delivery of immunoliposomes to human dendritic cells by targeting the multilectin receptor DEC-205. Vaccine 25:4757–4766

    Article  PubMed  CAS  Google Scholar 

  68. Wu Y-P, Miller LG, Danielson ND (1985) Determination of ethylene glycol using periodate oxidation and liquid chromatography. Analyst 110:1073–1076

    Article  CAS  Google Scholar 

  69. Puertas S, Moros M, Fernández-Pacheco R, Ibarra MR, Grazú V, de la Fuente JM (2010) Designing novel nano-immunoassays: antibody orientation versus sensitivity. J Phys D: Appl Phys 43:474012

    Article  Google Scholar 

  70. Lin PC, Chen SH, Wang KY, Chen ML, Adak AK, Hwu JR, Chen YJ, Lin CC (2009) Fabrication of oriented antibody-conjugated magnetic nanoprobes and their immunoaffinity application. Anal Chem 81:8774–8782

    Article  PubMed  CAS  Google Scholar 

  71. Grimsley GR, Pace CN (2004) Spectrophotometric determination of protein concentration. Curr Protoc Protein Sci Chapter 3:Unit 3.1

    Google Scholar 

  72. Peng L, Calton GJ, Burnett JW (1987) Effect of borohydride reduction on antibodies. Appl Biochem Biotechnol 14:91–99

    Article  PubMed  CAS  Google Scholar 

  73. Wong WS, Osuga DT, Feeney RE (1984) Pyridine borane as a reducing agent for proteins. Anal Biochem 139:58–67

    Article  PubMed  CAS  Google Scholar 

  74. Tiwari DK, Tanaka S, Inouye Y, Yoshizawa K, Watanabe TM, Jin T (2009) Synthesis and characterization of Anti-HER2 antibody conjugated CdSe/CdZnS quantum dots for fluorescence imaging of breast cancer cells. Sensors (Basel) 9:9332–9364

    Article  CAS  Google Scholar 

  75. Hermanson G (2008) Bioconjugate techniques, 2nd edn. Academic, London

    Google Scholar 

  76. Freedman MH, Grossberg AL, Pressman D (1968) The effects of complete modification of amino groups on the antibody activity of antihapten antibodies. Reversible inactivation with maleic anhydride. Biochemistry 7:1941–1950

    Article  PubMed  CAS  Google Scholar 

  77. Lee J, Choi Y, Kim K, Hong S, Park HY, Lee T, Cheon GJ, Song R (2010) Characterization and cancer cell specific binding properties of anti-EGFR antibody conjugated quantum dots. Bioconjug Chem 21:940–946

    Article  PubMed  CAS  Google Scholar 

  78. Vinci F, Catharino S, Frey S, Buchner J, Marino G, Pucci P, Ruoppolo M (2004) Hierarchical formation of disulfide bonds in the immunoglobulin Fc fragment is assisted by protein-disulfide isomerase. J Biol Chem 279:15059–15066

    Article  PubMed  CAS  Google Scholar 

  79. Riener CK, Kada G, Gruber HJ (2002) Quick measurement of protein sulfhydryls with Ellman’s reagent and with 4,4'-dithiodipyridine. Anal Bioanal Chem 373:266–276

    Article  PubMed  CAS  Google Scholar 

  80. Woodward J, Tate J, Herrmann PC, Evans BR (1993) Comparison of Ellman’s reagent with N-(1-pyrenyl)maleimide for the determination of free sulfhydryl groups in reduced cellobiohydrolase I from Trichoderma reesei. J Biochem Biophys Methods 26:121–129

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Elango Kumarasamy for editorial assistance. This research was supported in part by North Dakota EPSCoR Program, Department of Pharmaceutical Sciences (NDSU), Darryle and Clare Schoepp Research Fund, and American Association of Colleges of Pharmacy (AACP) NIA award to B.L.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Wagh, A., Law, B. (2013). Methods for Conjugating Antibodies to Nanocarriers. In: Ducry, L. (eds) Antibody-Drug Conjugates. Methods in Molecular Biology, vol 1045. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-541-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-541-5_15

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-540-8

  • Online ISBN: 978-1-62703-541-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics