Preparation and Characterization of DNA Block Copolymer Assemblies Loaded with Nanoparticles

  • Xi-Jun Chen
  • Robert J. Hickey
  • So-Jung Park
Part of the Methods in Molecular Biology book series (MIMB, volume 1025)


We have recently developed a universal procedure to functionalize inorganic nanoparticles with a dense layer of DNA through the self-assembly of DNA block copolymers and nanoparticles. This functionalization strategy allows one to combine the useful physical properties of inorganic nanoparticle with the enhanced DNA binding properties that originate from the high surface DNA density. In particular, the hybrid nanostructures exhibit orders of magnitude higher binding constants than regular DNA strands. This chapter presents a detailed protocol for the preparation and characterization of DNA block copolymer assemblies loaded with nanoparticles.

Key words

DNA Block copolymer Nanoparticles Self-assembly 



Controlled pore glass


Dynamic light scattering




Block copolymer of DNA and polystyrene




Förster/Fluorescent Resonance Energy Transfer


Magnetic nanoparticles


DNA-b-polystyrene assemblies loaded with magnetic nanoparticles


Phosphate buffer saline




Polystyrene modified magnetic nanoparticles


Self assembly of DNA-b-polystyrene




Transmission electron microscope





This work was supported by the NSF Career Award (DMR-087646) and NSF-IGERT Fellowship (DGE-0221664).


  1. 1.
    Bardhan R, Lal S, Joshi A, Halas NJ (2011) Theranostic nanoshells: from probe design to imaging and treatment of cancer. Acc Chem Res 44:936–946CrossRefGoogle Scholar
  2. 2.
    Della Rocca J, Liu D, Lin W (2011) Nanoscale metal-organic frameworks for biomedical imaging and drug delivery. Acc Chem Res 44:957–968CrossRefGoogle Scholar
  3. 3.
    Xie J, Liu G, Eden HS, Ai H, Chen X (2011) Surface-engineered magnetic nanoparticle platforms for cancer imaging and therapy. Acc Chem Res 44:883–892CrossRefGoogle Scholar
  4. 4.
    Erathodiyil N, Ying JY (2011) Functionalization of inorganic nanoparticles for bioimaging applications. Acc Chem Res 44:925–935CrossRefGoogle Scholar
  5. 5.
    Yoo D, Lee J-H, Shin T-H, Cheon J (2011) Theranostic magnetic nanoparticles. Acc Chem Res 44:863–874CrossRefGoogle Scholar
  6. 6.
    Kievit FM, Zhang M (2011) Surface engineering of iron oxide nanoparticles for targeted cancer therapy. Acc Chem Res 44:853–862CrossRefGoogle Scholar
  7. 7.
    Chen X-J, Sanchez-Gaytan BL, Qian Z, Park S-J (2012) Noble metal nanoparticles in DNA detection and delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol 4:273–290CrossRefGoogle Scholar
  8. 8.
    Rosi NL, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105:1547–1562CrossRefGoogle Scholar
  9. 9.
    Chen X-J, Sanchez-Gaytan BL, Hayik SEN, Fryd M, Wayland BB, Park S-J (2010) Self-assembled hybrid structures of DNA block-copolymers and nanoparticles with enhanced DNA binding properties. Small 6:2256–2260CrossRefGoogle Scholar
  10. 10.
    Li Z, Zhang Y, Fullhart P, Mirkin CA (2004) Reversible and chemically programmable micelle assembly with DNA block-copolymer amphiphiles. Nano Lett 4:1055–1058CrossRefGoogle Scholar
  11. 11.
    Alemdaroglu FE, Ding K, Berger R, Herrmann A (2006) DNA-templated synthesis in three dimensions: introducing a micellar scaffold for organic reactions. Angew Chem Int Ed 45:4206–4210CrossRefGoogle Scholar
  12. 12.
    Jeong JH, Park TG (2001) Novel Polymer-DNA hybrid polymeric micelles composed of hydrophobic Poly(D, L-lactic-co-glycolic Acid) and hydrophilic oligonucleotides. Bioconjug Chem 12:917–923CrossRefGoogle Scholar
  13. 13.
    Chien M-P, Rush AM, Thompson MP, Gianneschi NC (2010) Programmable shape-shifting micelles. Angew Chem Int Ed 49:5076–5080CrossRefGoogle Scholar
  14. 14.
    Northwestern University. oligonucleotide properties calculator used to calculate extinction coefficient of DNA.
  15. 15.
    Sun S, Zeng H (2002) Size-controlled synthesis of magnetite nanoparticles. J Am Chem Soc 124:8204–8205CrossRefGoogle Scholar
  16. 16.
    Clegg RM, David M.J.L.a.J.E.D. (1992) Fluorescence resonance energy transfer and nucleic acids. Methods Enzymol, vol. 211, Academic, p 353–388Google Scholar
  17. 17.
    The information is available at the Glen Research website. Glen Research. CrossRefGoogle Scholar
  18. 18.
    Kuno M, Lee JK, Dabbousi BO, Mikulec FV, Bawendi MG (1997) The band edge luminescence of surface modified CdSe nanocrystallites: probing the luminescing state. J Chem Phys 106:9869–9882CrossRefGoogle Scholar
  19. 19.
    Zimmermann J, Kwak M, Musser AJ, Herrmann A (2011) Amphiphilic DNA block copolymers: nucleic acid-polymer hybrid materials for diagnostics and biomedicine. Methods Mol Biol 751:239–266Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Xi-Jun Chen
    • 1
  • Robert J. Hickey
    • 1
  • So-Jung Park
    • 1
  1. 1.Department of ChemistryUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations