Neuhaus G, Bowler C, Hiratsuka K, Yamagata H, Chua NH (1997) Phytochrome-regulated repression of gene expression requires calcium and cGMP. EMBO J 16:2554–2564
PubMed
CrossRef
CAS
Google Scholar
Pharmawati M, Billington T, Gehring CA (1998) Stomatal guard cell responses to kinetin and natriuretic peptides are cGMP dependent. Cell Mol Life Sci 54:272–276
PubMed
CrossRef
CAS
Google Scholar
Gehring CA, Irving HR (2003) Natriuretic peptides—a class of heterologous molecules in plants. Int J Biochem Cell Biol 35:1318–1322
PubMed
CrossRef
CAS
Google Scholar
Kwezi L, Ruzvidzo O, Wheeler JI, Govender K, Iacuone S, Thompson PE, Gehring C, Irving HR (2011) The phytosulfokine (PSK) receptor is capable of guanylate cyclase activity and enabling cyclic GMP-dependent signaling in plants. J Biol Chem 286:22580–22588
PubMed
CrossRef
CAS
Google Scholar
Maathuis FJ, Sanders D (2001) Sodium uptake in Arabidopsis roots is regulated by cyclic nucleotides. Plant Physiol 127:1617–1625
PubMed
CrossRef
CAS
Google Scholar
Donaldson L, Ludidi N, Knight MR, Gehring C, Denby K (2004) Salt and osmotic stress cause rapid increases in Arabidopsis thaliana cGMP levels. FEBS Lett 569:317–320
PubMed
CrossRef
CAS
Google Scholar
Pasqualini S, Meier S, Gehring C, Madeo L, Fornaciari M, Romano B, Ederli L (2009) Ozone and nitric oxide induce cGMP-dependent and -independent transcription of defence genes in tobacco. New Phytol 181:860–870
PubMed
CrossRef
CAS
Google Scholar
Qi Z, Verma R, Gehring C, Yamaguchi Y, Zhao Y, Ryan CA, Berkowitz GA (2010) Ca2+ signaling by plant Arabidopsis thaliana Pep peptides depends on AtPepR1, a receptor with guanylyl cyclase activity, and cGMP-activated Ca2+ channels. Proc Natl Acad Sci USA 107:21193–21198
PubMed
CrossRef
CAS
Google Scholar
Leng Q, Mercier RW, Yao W, Berkowitz GA (1999) Cloning and first functional characterization of a plant cyclic nucleotide-gated cation channel. Plant Physiol 121:753–761
PubMed
CrossRef
CAS
Google Scholar
Ludidi N, Gehring C (2003) Identification of a novel protein with guanylyl cyclase activity in Arabidopsis thaliana. J Biol Chem 278:6490–6494
PubMed
CrossRef
CAS
Google Scholar
Meier S, Seoighe C, Kwezi L, Irving H, Gehring C (2007) Plant nucleotide cyclases: an increasingly complex and growing family. Plant Signal Behav 2:536–539
PubMed
CrossRef
Google Scholar
Kwezi L, Meier S, Mungur L, Ruzvidzo O, Irving H, Gehring C (2007) The Arabidopsis thaliana brassinosteroid receptor (AtBRI1) contains a domain that functions as a guanylyl cyclase in vitro. PloS One 2:e449
PubMed
CrossRef
Google Scholar
Gehring C (2010) Adenyl cyclases and cAMP in plant signaling—past and present. Cell Commun Signal 8:15
PubMed
CrossRef
Google Scholar
Liu Y, Ruoho A, Rao V, Hurley J (1997) Catalytic mechanisms of the adenyl and guanylyl cyclases: modelling and mutational analysis. Proc Natl Acad Sci USA 94:13414–13419
PubMed
CrossRef
CAS
Google Scholar
Mulaudzi T, Ludidi N, Ruzvidzo O, Morse M, Hendricks N, Iwuoha E, Gehring C (2011) Identification of a novel Arabidopsis thaliana nitric oxide-binding molecule with guanylate cyclase activity in vitro. FEBS Lett 585:2693–2697
PubMed
CrossRef
CAS
Google Scholar
Krieger E, Nabuurs SB, Vriend G (2005) Homology modeling. Structural bioinformatics. Wiley, New York, pp 509–523
CrossRef
Google Scholar
Eswar N, Webb B, Marti-Renom MA, Madhusudhan MS, Eramian D, Shen MY, Pieper U, Sali A (2001) Comparative protein structure modeling using MODELLER. Current protocols in protein science. Wiley, New York, Chapter 2, Unit 2.9.
Google Scholar
McCue L, McDonough K, Lawrence C (2000) Functional classification of cNMP-binding proteins and nucleotide cyclases with implications for novel regulatory pathways in Mycobacterium tuberculosis. Genome Res 10:204–219
PubMed
CrossRef
CAS
Google Scholar