Trypsin-Mediated 18O/16O Labeling for Biomarker Discovery

  • Xiaoying Ye
  • King C. Chan
  • DaRue A. Prieto
  • Brian T. Luke
  • Donald J. JohannJr.
  • Luke H. Stockwin
  • Dianne L. Newton
  • Josip Blonder
Part of the Methods in Molecular Biology book series (MIMB, volume 1002)


Differential 18O/16O stable isotopic labeling that relies on post-digestion 18O exchange is a simple and efficient method for the relative quantitation of proteins in complex mixtures. This method incorporates two 18O atoms onto the C-termini of proteolytic peptides resulting in a 4 Da mass-tag difference between 18O- and 16O-labeled peptides. This allows for wide-range relative quantitation of proteins in complex mixtures using shotgun proteomics. Because of minimal sample consumption and unrestricted peptide tagging, the post-digestion 18O exchange is suitable for labeling of low-abundance membrane proteins enriched from cancer cell lines or clinical specimens, including tissues and body fluids. This chapter describes a protocol that applies post-digestion 18O labeling to elucidate putative endogenous tumor hypoxia markers in the plasma membrane fraction enriched from a hypoxia-adapted malignant melanoma cell line. Plasma membrane proteins from hypoxic and normoxic cells were differentially tagged using 18O/16O stable isotopic labeling. The initial tryptic digestion and solubilization of membrane proteins were carried out in a buffer containing 60 % methanol followed by post-digestion 18O exchange/labeling in buffered 20 % methanol. The differentially labeled peptides were mixed in a 1:1 ratio and fractionated using off-line strong cation exchange (SCX) liquid chromatography followed by on-line reversed-phase nano-flow RPLC-MS identification and quantitation of peptides/proteins in respective SCX fractions. The present protocol illustrates the utility of 18O/16O stable isotope labeling in the context of quantitative shotgun proteomics that provides a basis for the discovery of hypoxia-induced membrane protein markers in malignant melanoma cell lines.

Key words

18O/16O stable isotope labeling Hypoxia biomarker Melanoma Quantitative shotgun proteomics Mass spectrometry 



This project has been funded in whole or in part with federal funds from the National Cancer Institute, National Institutes of Health, under Contracts HHSN261200800001E and NO1-CO-12400. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organization imply endorsement by the United States Government.


  1. 1.
    Issaq HJ, Waybright TJ, Veenstra TD (2011) Cancer biomarker discovery: opportunities and pitfalls in analytical methods. Electrophoresis 32:967–975PubMedCrossRefGoogle Scholar
  2. 2.
    Cox J, Mann M (2011) Quantitative, high-resolution proteomics for data-driven systems biology. Annu Rev Biochem 80:273–299PubMedCrossRefGoogle Scholar
  3. 3.
    Veenstra TD (2007) Global and targeted quantitative proteomics for biomarker discovery. J Chromatogr B Analyt Technol Biomed Life Sci 847:3–11PubMedCrossRefGoogle Scholar
  4. 4.
    Desiderio DM, Kai M (1983) Preparation of stable isotope-incorporated peptide internal standards for field desorption mass spectrometry quantification of peptides in biologic tissue. Biomed Mass Spectrom 10:471–479PubMedCrossRefGoogle Scholar
  5. 5.
    Yao X, Freas A, Ramirez J, Demirev PA, Fenselau C (2001) Proteolytic 18O labeling for comparative proteomics: model studies with two serotypes of adenovirus. Anal Chem 73:2836–2842PubMedCrossRefGoogle Scholar
  6. 6.
    Ye X, Luke B, Andresson T, Blonder J (2009) 18O stable isotope labeling in MS-based proteomics. Brief Funct Genomic Proteomic 8:136–144PubMedCrossRefGoogle Scholar
  7. 7.
    Gao Y, Gopee NV, Howard PC, Yu LR (2011) Proteomic analysis of early response lymph node proteins in mice treated with titanium dioxide nanoparticles. J Proteomics 74:2745–2759PubMedCrossRefGoogle Scholar
  8. 8.
    Loftheim H, Asberg A, Reubsaet L (2010) Accelerated 18O-labeling in urinary proteomics. J Chromatogr A 1217:8241–8248PubMedCrossRefGoogle Scholar
  9. 9.
    Qian WJ, Petritis BO, Kaushal A et al (2010) Plasma proteome response to severe burn injury revealed by 18O-labeled “universal” reference-based quantitative proteomics. J Proteome Res 9:4779–4789PubMedCrossRefGoogle Scholar
  10. 10.
    Qian WJ, Monroe ME, Liu T et al (2005) Quantitative proteome analysis of human plasma following in vivo lipopolysaccharide administration using 16O/18O labeling and the accurate mass and time tag approach. Mol Cell Proteomics 4:700–709PubMedCrossRefGoogle Scholar
  11. 11.
    Stockwin LH, Blonder J, Bumke MA et al (2006) Proteomic analysis of plasma membrane from hypoxia-adapted malignant melanoma. J Proteome Res 5:2996–3007PubMedCrossRefGoogle Scholar
  12. 12.
    Harris AL (2002) Hypoxia–a key regulatory factor in tumour growth. Nat Rev Cancer 2:38–47PubMedCrossRefGoogle Scholar
  13. 13.
    Vaupel P, Mayer A (2007) Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Rev 26:225–239PubMedCrossRefGoogle Scholar
  14. 14.
    Rybak SM, Sanovich E, Hollingshead MG et al (2003) “Vasocrine” formation of tumor cell-lined vascular spaces: implications for rational design of antiangiogenic therapies. Cancer Res 63:2812–2819PubMedGoogle Scholar
  15. 15.
    Lopez-Ferrer D, Hixson KK, Smallwood H, Squier TC, Petritis K, Smith RD (2009) Evaluation of a high-intensity focused ultrasound-immobilized trypsin digestion and 18O-labeling method for quantitative proteomics. Anal Chem 81:6272–6277PubMedCrossRefGoogle Scholar
  16. 16.
    Sevinsky JR, Brown KJ, Cargile BJ, Bundy JL, Stephenson JL Jr (2007) Minimizing back exchange in 18O/16O quantitative proteomics experiments by incorporation of immobilized trypsin into the initial digestion step. Anal Chem 79:2158–2162PubMedCrossRefGoogle Scholar
  17. 17.
    Blonder J, Hale ML, Lucas DA et al (2004) Proteomic analysis of detergent-resistant membrane rafts. Electrophoresis 25:1307–1318PubMedCrossRefGoogle Scholar
  18. 18.
    Blonder J, Conrads TP, Yu LR et al (2004) A detergent- and cyanogen bromide-free method for integral membrane proteomics: application to Halobacterium purple membranes and the human epidermal membrane proteome. Proteomics 4:31–45PubMedCrossRefGoogle Scholar
  19. 19.
    Ye X, Johann DJ Jr, Hakami RM et al (2009) Optimization of protein solubilization for the analysis of the CD14 human monocyte membrane proteome using LC-MS/MS. J Proteomics 73:112–122PubMedCrossRefGoogle Scholar
  20. 20.
    Yao X, Afonso C, Fenselau C (2003) Dissection of proteolytic 18O labeling: endoprotease-catalyzed 16O-to-18O exchange of truncated peptide substrates. J Proteome Res 2:147–152PubMedCrossRefGoogle Scholar
  21. 21.
    Blonder J, Hale ML, Chan KC et al (2005) Quantitative profiling of the detergent-resistant membrane proteome of iota-b toxin induced vero cells. J Proteome Res 4:523–531PubMedCrossRefGoogle Scholar
  22. 22.
    Klibanov AM (2001) Improving enzymes by using them in organic solvents. Nature 409:241–246PubMedCrossRefGoogle Scholar
  23. 23.
    Storms HF, van der Heijden R, Tjaden UR, van der Greef J (2006) Considerations for proteolytic labeling-optimization of 18O incorporation and prohibition of back-exchange. Rapid Commun Mass Spectrom 20:3491–3497PubMedCrossRefGoogle Scholar
  24. 24.
    Chan KC, Muschik GM, Issaq HJ (2000) Solid-state UV laser-induced fluorescence detection in capillary electrophoresis. Electrophoresis 21:2062–2066PubMedCrossRefGoogle Scholar
  25. 25.
    Ye X, Luke BT, Johann DJ Jr et al (2010) Optimized method for computing (18)O/(16)O ratios of differentially stable-isotope labeled peptides in the context of postdigestion (18)O exchange/labeling. Anal Chem 82:5878–5886PubMedCrossRefGoogle Scholar
  26. 26.
    Aozuka Y, Koizumi K, Saitoh Y, Ueda Y, Sakurai H, Saiki I (2004) Anti-tumor angiogenesis effect of aminopeptidase inhibitor bestatin against B16-BL6 melanoma cells orthotopically implanted into syngeneic mice. Cancer Lett 216:35–42PubMedCrossRefGoogle Scholar
  27. 27.
    Saiki I, Fujii H, Yoneda J et al (1993) Role of aminopeptidase N (CD13) in tumor-cell invasion and extracellular matrix degradation. Int J Cancer 54:137–143PubMedCrossRefGoogle Scholar
  28. 28.
    Wigelsworth DJ, Ruthel G, Schnell L, et al (2012) CD44 Promotes intoxication by the clostridial iota-family toxins. PLoS One 7:e51356 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  • Xiaoying Ye
    • 1
  • King C. Chan
    • 2
  • DaRue A. Prieto
    • 1
  • Brian T. Luke
    • 1
  • Donald J. JohannJr.
    • 3
  • Luke H. Stockwin
    • 1
  • Dianne L. Newton
    • 1
  • Josip Blonder
    • 1
  1. 1.Frederick National Laboratory for Cancer ResearchFrederickUSA
  2. 2.Laboratory of Proteomics and Analytical Technologies, Advanced Technology Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer ResearchFrederickUSA
  3. 3.National Cancer InstituteBethesdaUSA

Personalised recommendations