Skip to main content

Retrovirus-Based mRNA Transfer for Transient Cell Manipulation

  • Protocol
  • First Online:
Synthetic Messenger RNA and Cell Metabolism Modulation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 969))

Abstract

Retrovirus-mediated mRNA transfer (RMT) combines the advantageous features of retrovirus-mediated cell targeting and entry with the controlled transfer of mRNAs. We have recently exploited this strategy for the dose-controlled transfer of recombinases and DNA transposases, avoiding cytotoxicity and potential insertional mutagenesis. Further applications can be envisaged, especially when low expression levels are sufficient to modify cell fate or function. Here we describe a step-by-step protocol for the generation of RMT vector particles, their titration and their application in a model cell line.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Galla M, Will E, Kraunus J et al (2004) Retroviral pseudotransduction for targeted cell manipulation. Mol Cell 16:309–315

    Article  PubMed  CAS  Google Scholar 

  2. Galla M, Schambach A, Towers GJ, Baum C (2008) Cellular restriction of retrovirus ­particle-mediated mRNA transfer. J Virol 82:3069–3077

    Article  PubMed  CAS  Google Scholar 

  3. Galla M, Schambach A, Falk CS et al (2011) Avoiding cytotoxicity of transposases by dose-controlled mRNA delivery. Nucleic Acids Res 39:7147–7160

    Article  PubMed  CAS  Google Scholar 

  4. Mann R, Mulligan RC, Baltimore D (1983) Construction of a retrovirus packaging mutant and its use to produce helper-free defective retrovirus. Cell 33:153–159

    Article  PubMed  CAS  Google Scholar 

  5. Hu WS, Temin HM (1990) Retroviral recombination and reverse transcription. Science 250:1227–1233

    Article  PubMed  CAS  Google Scholar 

  6. Lund AH, Duch M, Lovmand J et al (1997) Complementation of a primer binding site-impaired murine leukemia virus-derived retroviral vector by a genetically engineered tRNA-like primer. J Virol 71:1191–1195

    PubMed  CAS  Google Scholar 

  7. Hildinger M, Abel KL, Ostertag W, Baum C (1999) Design of 5′ untranslated sequences in retroviral vectors developed for medical use. J Virol 73:4083–4089

    PubMed  CAS  Google Scholar 

  8. Schambach A, Mueller D, Galla M et al (2006) Overcoming promoter competition in packaging cells improves production of self-inactivating retroviral vectors. Gene Ther 13:1524–1533

    Article  PubMed  CAS  Google Scholar 

  9. Hope T (2002) Improving the post-transcriptional aspects of lentiviral vectors. Curr Top Microbiol Immunol 261:179–189

    Article  PubMed  CAS  Google Scholar 

  10. Schambach A, Galla M, Maetzig T et al (2007) Improving transcriptional termination of self-inactivating gamma-retroviral and lentiviral vectors. Mol Ther 15:1167–1173

    PubMed  CAS  Google Scholar 

  11. Higashimoto T, Urbinati F, Perumbeti A et al (2007) The woodchuck hepatitis virus post-transcriptional regulatory element reduces readthrough transcription from retroviral vectors. Gene Ther 14:1298–1304

    Article  PubMed  CAS  Google Scholar 

  12. Schambach A, Bohne J, Baum C et al (2006) Woodchuck hepatitis virus post-transcriptional regulatory element deleted from X protein and promoter sequences enhances retroviral vector titer and expression. Gene Ther 13:641–645

    Article  PubMed  CAS  Google Scholar 

  13. Schambach A, Swaney WP, van der Loo JC (2009) Design and production of retro- and lentiviral vectors for gene expression in hematopoietic cells. Methods Mol Biol 506: 191–205

    Article  PubMed  CAS  Google Scholar 

  14. Buchholz CJ, Muhlebach MD, Cichutek K (2009) Lentiviral vectors with measles virus glycoproteins - dream team for gene transfer? Trends Biotechnol 27:259–265

    Article  PubMed  CAS  Google Scholar 

  15. Voelkel C, Galla M, Maetzig T et al (2010) Protein transduction from retroviral Gag precursors. Proc Natl Acad Sci USA 107: 7805–7810

    Article  PubMed  CAS  Google Scholar 

  16. Schambach A, Bohne J, Chandra S et al (2006) Equal potency of gammaretroviral and lentiviral SIN vectors for expression of O6-methylguanine-DNA methyltransferase in hematopoietic cells. Mol Ther 13:391–400

    Article  PubMed  CAS  Google Scholar 

  17. Yang Y, Vanin EF, Whitt MA et al (1995) Inducible, high-level production of infectious murine leukemia retroviral vector particles pseudotyped with vesicular stomatitis virus G envelope protein. Hum Gene Ther 6:1203–1213

    Article  PubMed  CAS  Google Scholar 

  18. Raymond CS, Soriano P (2007) High-efficiency FLP and PhiC31 site-specific recombination in mammalian cells. PLoS One 2:e162

    Article  PubMed  Google Scholar 

  19. Kozak M (1987) An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res 15:8125–8148

    Article  PubMed  CAS  Google Scholar 

  20. Donello JE, Loeb JE, Hope TJ (1998) Woodchuck hepatitis virus contains a tripartite posttranscriptional regulatory element. J Virol 72:5085–5092

    PubMed  CAS  Google Scholar 

  21. Zufferey R, Donello JE, Trono D, Hope ZJ (1999) Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. J Virol 73:2886–2892

    PubMed  CAS  Google Scholar 

  22. Popa I, Harris ME, Donello JE, Hope TJ (2002) CRM1-dependent function of a cis-acting RNA export element. Mol Cell Biol 22:2057–2067

    Article  PubMed  CAS  Google Scholar 

  23. Morita S, Kojima T, Kitamura T (2000) Plat-E: an efficient and stable system for transient packaging of retroviruses. Gene Ther 7: 1063–1070

    Article  PubMed  CAS  Google Scholar 

  24. Sandrin V, Boson B, Salmon P et al (2002) Lentiviral vectors pseudotyped with a modified RD114 envelope glycoprotein show increased stability in sera and augmented transduction of primary lymphocytes and CD34+ cells derived from human and nonhuman primates. Blood 100:823–832

    Article  PubMed  CAS  Google Scholar 

  25. Kwon YJ, Hung G, Anderson WF et al (2003) Determination of infectious retrovirus concentration from colony-forming assay with quantitative analysis. J Virol 77:5712–5720

    Article  PubMed  CAS  Google Scholar 

  26. Beyer WR, Westphal M, Ostertag W, von Laer D (2002) Oncoretrovirus and lentivirus vectors pseudotyped with lymphocytic choriomeningitis virus glycoprotein: generation, concentration, and broad host range. J Virol 76:1488–1495

    Article  PubMed  CAS  Google Scholar 

  27. Berkowitz R, Fisher J, Goff SP (1996) RNA packaging. Curr Top Microbiol Immunol 214:177–218

    Article  PubMed  CAS  Google Scholar 

  28. Rulli SJ Jr, Hibbert CS, Mirro J et al (2007) Selective and nonselective packaging of cellular RNAs in retrovirus particles. J Virol 81:6623–6631

    Article  PubMed  CAS  Google Scholar 

  29. Muriaux D, Mirro J, Harvin D, Rein A (2001) RNA is a structural element in retrovirus particles. Proc Natl Acad Sci USA 98:5246–5251

    Article  PubMed  CAS  Google Scholar 

  30. Toyoshima K, Vogt PK (1969) Enhancement and inhibition of avian sarcoma viruses by polycations and polyanions. Virology 38: 414–426

    Article  PubMed  CAS  Google Scholar 

  31. Hennemann B, Chuo JY, Schley PD, Lambie K et al (2000) High-efficiency retroviral transduction of mammalian cells on positively charged surfaces. Hum Gene Ther 11:43–51

    Article  PubMed  CAS  Google Scholar 

  32. Ho WZ, Cherukuri R, Ge SD et al (1993) Centrifugal enhancement of human immunodeficiency virus type 1 infection and human cytomegalovirus gene expression in human primary monocyte/macrophages in vitro. J Leukoc Biol 53:208–212

    PubMed  CAS  Google Scholar 

  33. Bahnson AB, Dunigan JT, Baysal BE et al (1995) Centrifugal enhancement of retroviral mediated gene transfer. J Virol Methods 54:131–143

    Article  PubMed  CAS  Google Scholar 

  34. Kotani H, Newton PB 3rd, Zhang S et al (1994) Improved methods of retroviral vector transduction and production for gene therapy. Hum Gene Ther 5:19–28

    Article  PubMed  CAS  Google Scholar 

  35. Hodgkin PD, Scalzo AA, Swaminathan N et al (1988) Murine cytomegalovirus binds reversibly to mouse embryo fibroblasts: implications for quantitation and explanation of centrifugal enhancement. J Virol Methods 22:215–230

    Article  PubMed  CAS  Google Scholar 

  36. Guo J, Wang W, Yu D, Wu Y (2011) Spinoculation triggers dynamic actin and cofilin activity that facilitates HIV-1 infection of transformed and resting CD4 T cells. J Virol 85:9824–9833

    Article  PubMed  CAS  Google Scholar 

  37. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  38. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3:1101–1108

    Article  PubMed  CAS  Google Scholar 

  39. Schmittgen TD, Zakrajsek BA, Mills AG et al (2000) Quantitative reverse transcription-polymerase chain reaction to study mRNA decay: comparison of endpoint and real-time methods. Anal Biochem 285:194–204

    Article  PubMed  CAS  Google Scholar 

  40. Modlich U, Schambach A, Li Z, Schiedlmeier B (2009) Murine hematopoietic stem cell transduction using retroviral vectors. Methods Mol Biol 506:23–31

    Article  PubMed  CAS  Google Scholar 

  41. Ruoslahti E (1988) Fibronectin and its receptors. Ann Rev Biochem 57:375–413

    Article  PubMed  CAS  Google Scholar 

  42. Kimizuka F, Taguchi Y, Ohdate Y et al (1991) Production and characterization of functional domains of human fibronectin expressed in Escherichia coli. J Biochem 110:284–291

    PubMed  CAS  Google Scholar 

  43. Hanenberg H, Hashino K, Konishi H et al (1997) Optimization of fibronectin-assisted retroviral gene transfer into human CD34+ hematopoietic cells. Hum Gene Ther 8: 2193–2206

    Article  PubMed  CAS  Google Scholar 

  44. Asada K, Uemori T, Ueno T et al (1998) Enhancement of retroviral gene transduction on a dish coated with a cocktail of two different polypeptides: one exhibiting binding activity toward target cells, and the other toward retroviral vectors. J Biochem 123: 1041–1047

    Article  PubMed  CAS  Google Scholar 

  45. van der Loo JC, Xiao X, McMillin D et al (1998) VLA-5 is expressed by mouse and human long-term repopulating hematopoietic cells and mediates adhesion to extracellular matrix protein fibronectin. J Clin Invest 102:1051–1061

    Article  PubMed  Google Scholar 

  46. Hanenberg H, Xiao XL, Dilloo D et al (1996) Colocalization of retrovirus and target cells on specific fibronectin fragments increases genetic transduction of mammalian cells. Nat Med 2:876–882

    Article  PubMed  CAS  Google Scholar 

  47. Grez M, Akgun E, Hilberg F, Ostertag W (1990) Embryonic stem cell virus, a recombinant murine retrovirus with expression in embryonic stem cells. Proc Natl Acad Sci USA 87:9202–9206

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants by the Deutsche Forschungs-gemeinschaft (SFB738 project C4; excellence cluster REBIRTH), the German Ministry for Research and Education (BMBF), and the European Union (FP7 project PERSIST). We thank Ivonne Fernandez, Girmay Asgedom, and Thomas Neumann for technical assistance and Tamaryin Godinho for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Baum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Galla, M., Schambach, A., Baum, C. (2013). Retrovirus-Based mRNA Transfer for Transient Cell Manipulation. In: Rabinovich, P. (eds) Synthetic Messenger RNA and Cell Metabolism Modulation. Methods in Molecular Biology, vol 969. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-260-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-260-5_10

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-259-9

  • Online ISBN: 978-1-62703-260-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics