Skip to main content

p53 Actions on MicroRNA Expression and Maturation Pathway

  • Protocol
  • First Online:
p53 Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 962))

Abstract

The tumor suppressor p53 orchestrates multiple cellular pathways as a central node of anti-oncogenic programs in response to DNA damage, oncogene activation, and several stresses. In addition to the principal role as a transcription factor that transactivates many target genes involved in apoptosis and cell cycle control, p53 has been shown to exert various transactivation-independent effects both in the nucleus and in the cytoplasm. Diversity of p53 activities is further emphasized by the recent studies revealing the close interaction between the p53 and microRNA (miRNA) world. We recently demonstrated that p53 promotes the processing of several primary miRNA transcripts through association with Drosha, a central RNase III in miRNA biogenesis, under DNA damage-inducing conditions. In contrast to wild-type p53, cancer-derived p53 mutants attenuate miRNA maturation. These findings reveal a novel aspect of p53 activities and suggest complex crosstalks between miRNA biogenesis and intracellular signaling pathways. In this chapter, we describe the methods for evaluation of the effects of p53 on miRNA expression, an interaction between pri-miRNA and Drosha complex, and pri-miRNA processing activity of the Drosha complex.

Potential conflicts of interest: none.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brown CJ, Lain S, Verma CS, Fersht AR, Lane DP (2009) Awakening guardian angels: drugging the p53 pathway. Nat Rev Cancer 9:862–873

    Article  PubMed  CAS  Google Scholar 

  2. Soussi T, Beroud C (2001) Assessing TP53 status in human tumours to evaluate clinical outcome. Nat Rev Cancer 1:233–240

    Article  PubMed  CAS  Google Scholar 

  3. Green DR, Kroemer G (2009) Cytoplasmic functions of the tumour suppressor p53. Nature 458:1127–1130

    Article  PubMed  CAS  Google Scholar 

  4. Suzuki HI, Miyazono K (2010) Dynamics of microRNA biogenesis: crosstalk between p53 network and microRNA processing pathway. J Mol Med 88:1085–1094

    Article  PubMed  CAS  Google Scholar 

  5. Krol J, Loedige I, Filipowicz W (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11:597–610

    PubMed  CAS  Google Scholar 

  6. Mendell JT (2005) MicroRNAs: critical regulators of development, cellular physiology and malignancy. Cell Cycle 4:1179–1184

    Article  PubMed  CAS  Google Scholar 

  7. Gregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B, Cooch N et al (2004) The Microprocessor complex mediates the genesis of microRNAs. Nature 432:235–240

    Article  PubMed  CAS  Google Scholar 

  8. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J et al (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425:415–419

    Article  PubMed  CAS  Google Scholar 

  9. Han J, Lee Y, Yeom KH, Nam JW, Heo I, Rhee JK et al (2006) Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 125:887–901

    Article  PubMed  CAS  Google Scholar 

  10. Fukuda T, Yamagata K, Fujiyama S, Matsumoto T, Koshida I, Yoshimura K et al (2007) DEAD-box RNA helicase subunits of the Drosha complex are required for processing of rRNA and a subset of microRNAs. Nat Cell Biol 9:604–611

    Article  PubMed  CAS  Google Scholar 

  11. Yi R, Qin Y, Macara IG, Cullen BR (2003) Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17:3011–3016

    Article  PubMed  CAS  Google Scholar 

  12. Gregory RI, Chendrimada TP, Cooch N, Shiekhattar R (2005) Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell 123:631–640

    Article  PubMed  CAS  Google Scholar 

  13. Suzuki HI, Miyazono K (2011) Emerging complexity of microRNA generation cascades. J Biochem 149(1):15–25

    Article  PubMed  CAS  Google Scholar 

  14. He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y et al (2007) A microRNA component of the p53 tumour suppressor network. Nature 447:1130–1134

    Article  PubMed  CAS  Google Scholar 

  15. Chang TC, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH et al (2007) Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 26:745–752

    Article  PubMed  CAS  Google Scholar 

  16. Raver-Shapira N, Marciano E, Meiri E, Spector Y, Rosenfeld N, Moskovits N et al (2007) Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell 26:731–743

    Article  PubMed  CAS  Google Scholar 

  17. Tarasov V, Jung P, Verdoodt B, Lodygin D, Epanchintsev A, Menssen A et al (2007) Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle 6:1586–1593

    Article  PubMed  CAS  Google Scholar 

  18. Braun CJ, Zhang X, Savelyeva I, Wolff S, Moll UM, Schepeler T et al (2008) p53-Responsive micrornas 192 and 215 are capable of inducing cell cycle arrest. Cancer Res 68:10094–10104

    Article  PubMed  CAS  Google Scholar 

  19. Georges SA, Biery MC, Kim SY, Schelter JM, Guo J, Chang AN et al (2008) Coordinated regulation of cell cycle transcripts by p53-Inducible microRNAs, miR-192 and miR-215. Cancer Res 68:10105–10112

    Article  PubMed  CAS  Google Scholar 

  20. Yan HL, Xue G, Mei Q, Wang YZ, Ding FX, Liu MF et al (2009) Repression of the miR-17-92 cluster by p53 has an important function in hypoxia-induced apoptosis. EMBO J 28:2719–2732

    Article  PubMed  CAS  Google Scholar 

  21. Suzuki HI, Yamagata K, Sugimoto K, Iwamoto T, Kato S, Miyazono K (2009) Modulation of microRNA processing by p53. Nature 460:529–533

    Article  PubMed  CAS  Google Scholar 

  22. Pothof J, Verkaik NS, van Ijcken IW, Wiemer EA, Ta VT, van der Horst GT et al (2009) MicroRNA-mediated gene silencing modulates the UV-induced DNA-damage response. EMBO J 28:2090–2099

    Article  PubMed  CAS  Google Scholar 

  23. Bates GJ, Nicol SM, Wilson BJ, Jacobs AM, Bourdon JC, Wardrop J et al (2005) The DEAD box protein p68: a novel transcriptional coactivator of the p53 tumour suppressor. EMBO J 24:543–553

    Article  PubMed  CAS  Google Scholar 

  24. Park SY, Lee JH, Ha M, Nam JW, Kim VN (2009) miR-29 miRNAs activate p53 by targeting p85 alpha and CDC42. Nat Struct Mol Biol 16:23–29

    Article  PubMed  CAS  Google Scholar 

  25. Le MT, Teh C, Shyh-Chang N, Xie H, Zhou B, Korzh V et al (2009) MicroRNA-125b is a novel negative regulator of p53. Genes Dev 23:862–876

    Article  PubMed  CAS  Google Scholar 

  26. Fornari F, Gramantieri L, Giovannini C, Veronese A, Ferracin M, Sabbioni S et al (2009) MiR-122/cyclin G1 interaction modulates p53 activity and affects doxorubicin sensitivity of human hepatocarcinoma cells. Cancer Res 69:5761–5767

    Article  PubMed  CAS  Google Scholar 

  27. Voorhoeve PM, le Sage C, Schrier M, Gillis AJ, Stoop H, Nagel R et al (2006) A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell 124:1169–1181

    Article  PubMed  CAS  Google Scholar 

  28. Mudhasani R, Zhu Z, Hutvagner G, Eischen CM, Lyle S, Hall LL et al (2008) Loss of miRNA biogenesis induces p19Arf-p53 signaling and senescence in primary cells. J Cell Biol 181:1055–1063

    Article  PubMed  CAS  Google Scholar 

  29. Su X, Chakravarti D, Cho MS, Liu L, Gi YJ, Lin YL et al (2010) TAp63 suppresses metastasis through coordinate regulation of Dicer and miRNAs. Nature 467:986–990

    Article  PubMed  CAS  Google Scholar 

  30. Chen C, Tan R, Wong L, Fekete R, Halsey J (2011) Quantitation of microRNAs by real-time RT-qPCR. Methods Mol Biol 687:113–134

    Article  PubMed  CAS  Google Scholar 

  31. Niranjanakumari S, Lasda E, Brazas R, Garcia-Blanco MA (2002) Reversible cross-linking combined with immunoprecipitation to study RNA-protein interactions in vivo. Methods 26:182–190

    Article  PubMed  CAS  Google Scholar 

  32. Sun BK, Deaton AM, Lee JT (2006) A transient heterochromatic state in Xist preempts X inactivation choice without RNA stabilization. Mol Cell 21:617–628

    Article  PubMed  CAS  Google Scholar 

  33. Ni JQ, Liu LP, Hess D, Rietdorf J, Sun FL (2006) Drosophila ribosomal proteins are associated with linker histone H1 and suppress gene transcription. Genes Dev 20:1959–1973

    Article  PubMed  CAS  Google Scholar 

  34. Gregory RI, Chendrimada TP, Shiekhattar R (2006) MicroRNA biogenesis: isolation and characterization of the microprocessor complex. Methods Mol Biol 342:33–47

    PubMed  CAS  Google Scholar 

  35. Ishizuka A, Saito K, Siomi MC, Siomi H (2006) In vitro precursor microRNA processing assays using Drosophila Schneider-2 cell lysates. Methods Mol Biol 342:277–286

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank K. Yamagata and S. Kato for technical advice on in vitro processing analysis. This work was supported by KAKENHI (Grant-in-Aid for Scientific Research) and the Global Center of Excellence Program for “Integrative Life Science Based on the Study of Biosignaling Mechanisms” from the Ministry of Education, Culture, Sports, Science, and Technology of Japan. H.I.S. is supported by a research fellowship of the Japan Society for the Promotion of Science for Young Scientists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kohei Miyazono .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Suzuki, H.I., Miyazono, K. (2013). p53 Actions on MicroRNA Expression and Maturation Pathway. In: Deb, S., Deb, S. (eds) p53 Protocols. Methods in Molecular Biology, vol 962. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-236-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-236-0_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-235-3

  • Online ISBN: 978-1-62703-236-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics