Future Developments in Instrumentation for Electron Crystallography

  • Kenneth H. Downing
Part of the Methods in Molecular Biology book series (MIMB, volume 955)


Advances in instrumentation have proceeded at an impressive rate since the invention of the electron microscope. These advances have produced a continuous expansion of the capabilities and range of application of electron microscopy. In order to provide some insights on how continuing advances may enhance cryo-electron microscopy and electron crystallography, we review some of the active areas of instrumentation development. There is strong momentum in areas including detectors, phase contrast devices, and aberration correctors that may have substantial impact on the productivity and expectations of electron crystallographers.

Key words

Cryo-electron microscopy Electron crystallography Charge coupled device CMOS detector Phase plate Aberration corrector DTEM 


  1. 1.
    Williams RC, Fisher HW (1970) Electron microscopy of tobacco mosaic virus under conditions of minimal beam exposure. J Mol Biol 52:121–123PubMedCrossRefGoogle Scholar
  2. 2.
    Matricardi VR, Moretz RC, Parsons DF (1972) Electron diffraction of wet proteins: catalase. Science 177:268–270PubMedCrossRefGoogle Scholar
  3. 3.
    Heide HG, Grund S (1974) Deep-freeze link for transport of water-containing biological objects to the electron microscope. J Ultrastruct Res 48:259–268PubMedCrossRefGoogle Scholar
  4. 4.
    Taylor KA, Glaeser RM (1975) Modified airlock door for the introduction of frozen specimens into the JEM 100B electron microscope. Rev Sci Instrum 46:985–986CrossRefGoogle Scholar
  5. 5.
    Taylor KA, Glaeser RM (1974) Electron diffraction of frozen, hydrated protein crystals. Science 186:1036–1037PubMedCrossRefGoogle Scholar
  6. 6.
    Adrian M, Dubochet J, Lepault J, McDowall AW (1984) Cryo-electron microscopy of viruses. Nature 308:32–36PubMedCrossRefGoogle Scholar
  7. 7.
    Downing KH (1991) Spot-scan imaging in transmission electron microscopy. Science 251:53–59PubMedCrossRefGoogle Scholar
  8. 8.
    Carragher B, Kisseberth N, Kriegman D, Milligan RA, Potter CS, Pulokas J, Reilein A (2000) Leginon: an automated system for acquisition of images from vitreous ice specimens. J Struct Biol 132:33–45PubMedCrossRefGoogle Scholar
  9. 9.
    Nickell S, Forster F, Linaroudis A, Net WD, Beck F, Hegerl R, Baumeister W, Plitzko JM (2005) TOM software toolbox: acquisition and analysis for electron tomography. J Struct Biol 149:227–234PubMedCrossRefGoogle Scholar
  10. 10.
    Mastronarde DN (2005) Automated electron microscope tomography using robust prediction of specimen movements. J Struct Biol 152:36–51PubMedCrossRefGoogle Scholar
  11. 11.
    Sass S (1989) A patently false myth. Skeptical Inquirer 13:310–313Google Scholar
  12. 12.
    Boersch H (1947) Uber die kontraste von atomen im elektronenmikroskop. Z Naturforsch A – J Phys Sci 2:615–633Google Scholar
  13. 13.
    Danev R, Glaeser RM, Nagayama K (2009) Practical factors affecting the performance of a thin-film phase plate for transmission electron microscopy. Ultramicroscopy 109:312–325PubMedCrossRefGoogle Scholar
  14. 14.
    Downing KH (1979) Possibilities of heavy atom discrimination using single-sideband techniques. Ultramicroscopy 4:13–31CrossRefGoogle Scholar
  15. 15.
    Unwin PNT (1972) Electron microscopy of biological specimens by means of an electrostatic phase plate. Poc Roy Phil Soc A Math Phys Sci 329:327–359CrossRefGoogle Scholar
  16. 16.
    Danev R, Nagayama K (2001) Transmission electron microscopy with Zernike phase plate. Ultramicroscopy 88:243–252PubMedCrossRefGoogle Scholar
  17. 17.
    Danev R, Kanamaru S, Marko M, Nagayama K (2010) Zernike phase contrast cryo-electron tomography. J Struct Biol 171:174–181PubMedCrossRefGoogle Scholar
  18. 18.
    Majorovits E, Barton B, Schultheiss K, Perez-Willard F, Gerthsen D, Schroder RR (2007) Optimizing phase contrast in transmission electron microscopy with an electrostatic (Boersch) phase plate. Ultramicroscopy 107:213–226PubMedCrossRefGoogle Scholar
  19. 19.
    Alloyeau D, Hsieh WK, Anderson EH, Hilken L, Benner G, Meng X, Chen FR, Kisielowski C (2010) Imaging of soft and hard materials using a Boersch phase plate in a transmission electron microscope. Ultramicroscopy 110:563–570CrossRefGoogle Scholar
  20. 20.
    Cambie R, Downing KH, Typke D, Glaeser RM, Jin J (2007) Design of a microfabricated, two-electrode phase-contrast element suitable for electron microscopy. Ultramicroscopy 107:329–339PubMedCrossRefGoogle Scholar
  21. 21.
    Danev R, Nagayama K (2004) Complex observation in electron microscopy: IV. Reconstruction of complex object wave from conventional and half plane phase plate image pair. J Phys Soc Jpn 73:2718–2724CrossRefGoogle Scholar
  22. 22.
    Schröder RR, Barton B, Rose H, Benner G (2007) Contrast enhancement by anamorphotic phase plates in an aberration corrected TEM. Microsc Microanal 13(suppl 3):136–137Google Scholar
  23. 23.
    Tonomura A, Osakabe N, Matsuda T, Kawasaki T, Endo J, Yano S, Yamada H (1986) Evidence for Aharonov-Bohm effect with magnetic-field completely shielded from electron wave. Phys Rev Lett 56:792–795PubMedCrossRefGoogle Scholar
  24. 24.
    Nagayama K (2008) Development of phase plates for electron microscopes and their biological application. Eur Biophys J 37:345–358PubMedCrossRefGoogle Scholar
  25. 25.
    Muller H, Jin JA, Danev R, Spence J, Padmore H, Glaeser RM (2010) Design of an electron microscope phase plate using a focused continuous-wave laser. New J Phys 12Google Scholar
  26. 26.
    Tietz H (2008) Design and characterization of 64 megapixel fiber optic coupled CMOS detector for transmission electron microscopy. Microsc Microanal 14(suppl S2): 804–805Google Scholar
  27. 27.
    Roberts PTE, Chapman JN, Macleod AM (1982) A CCD-based image recording-system for the CTEM. Ultramicroscopy 8:385–396CrossRefGoogle Scholar
  28. 28.
    McMullan G, Chen S, Henderson R, Faruqi AR (2009) Detective quantum efficiency of electron area detectors in electron microscopy. Ultramicroscopy 109:1126–1143PubMedCrossRefGoogle Scholar
  29. 29.
    Battaglia M, Contarato D, Denes P, Doering D, Giubilato P, Kim TS, Mattiazzo S, Radmilovic V, Zalusky S (2009) A rad-hard CMOS active pixel sensor for electron microscopy. Nucl Instrum Methods Phys Res A 598:642–649CrossRefGoogle Scholar
  30. 30.
    McMullan G, Faruqi AR, Henderson R, Guerrini N, Turchetta R, Jacobs A, van Hoften G (2009) Experimental observation of the improvement in MTF from backthinning a CMOS direct electron detector. Ultramicroscopy 109:1144–1147PubMedCrossRefGoogle Scholar
  31. 31.
    McMullan G, Clark AT, Turchetta R, Faruqi AR (2009) Enhanced imaging in low dose electron microscopy using electron counting. Ultramicroscopy 109:1411–1416PubMedCrossRefGoogle Scholar
  32. 32.
    Battaglia M, Contarato D, Denes P, Giubilato P (2009) Cluster imaging with a direct detection CMOS pixel sensor in Transmission Electron Microscopy. Nucl Instrum Methods Phys Res A 608:363–365CrossRefGoogle Scholar
  33. 33.
    Fan GY, Datte P, Beuville E, Beche JF, Millaud J, Downing KH, Burkard FT, Ellisman MH, Xuong NH (1998) ASIC-based event-driven 2D digital electron counter for TEM imaging. Ultramicroscopy 70:107–113PubMedCrossRefGoogle Scholar
  34. 34.
    Scherzer O (1949) The theoretical resolution limit of the electron microscope. J Appl Phys 20:20–29CrossRefGoogle Scholar
  35. 35.
    Rose HH (2009) Historical aspects of aberration correction. J Electron Microsc 58:77–85CrossRefGoogle Scholar
  36. 36.
    Frank J (1973) The envelope of electron microscopic transfer functions for partially coherent illumination. Optik 38:519–536Google Scholar
  37. 37.
    Glaeser R, Downing K, DeRosier D, Chiu W, Frank J (2007) Electron microscopy of biological macromolecules. Oxford, New YorkGoogle Scholar
  38. 38.
    Berriman J, Unwin N (1994) Analysis of transient structures by cryomicroscopy combined with rapid mixing of spray droplets. Ultramicroscopy 56:241–252PubMedCrossRefGoogle Scholar
  39. 39.
    Lu ZH, Shaikh TR, Barnard D, Meng X, Mohamed H, Yassin A, Mannella CA, Agrawal RK, Lu TM, Wagenknecht T (2009) Monolithic microfluidic mixing-spraying devices for time-resolved cryo-electron microscopy. J Struct Biol 168:388–395PubMedCrossRefGoogle Scholar
  40. 40.
    Shaikh TR, Barnard D, Meng X, Wagenknecht T (2009) Implementation of a flash-photolysis system for time-resolved cryo-electron microscopy. J Struct Biol 165:184–189PubMedCrossRefGoogle Scholar
  41. 41.
    Fischer N, Konevega AL, Wintermeyer W, Rodnina MV, Stark H (2010) Ribosome dynamics and tRNA movement by time-resolved electron cryomicroscopy. Nature 466:329–333PubMedCrossRefGoogle Scholar
  42. 42.
    Reed BW, Armstrong MR, Browning ND, Campbell GH, Evans JE, LaGrange T, Masiel DJ (2009) The evolution of ultrafast electron microscope instrumentation. Microsc Microanal 15:272–281PubMedCrossRefGoogle Scholar
  43. 43.
    Miller RJD, Ernstorfer R, Harb M, Gao M, Hebeisen CT, Jean-Ruel H, Lu C, Moriena G, Sciaini G (2010) ‘Making the molecular movie’: first frames. Acta Cryst A 66:137–156CrossRefGoogle Scholar
  44. 44.
    Zewail AH (2010) Four-dimensional electron microscopy. Science 328:187–193PubMedCrossRefGoogle Scholar
  45. 45.
    Vonck J, Han BG, Burkard F, Perkins GA, Glaeser RM (1994) Two progressive substates of the M-inermediate can be identified in glucose-embedded, wild-type bacteriorhodopsin. Biophys J 67:1173–1178PubMedCrossRefGoogle Scholar
  46. 46.
    Subramaniam S, Lindahl I, Bullough P, Faruqi AR, Tittor J, Oesterhelt D, Brown L, Lanyi J, Henderson R (1999) Protein conformational changes in the bacteriorhodopsin photocycle. J Mol Biol 287:145–161PubMedCrossRefGoogle Scholar
  47. 47.
    Hahn M, Seredynski J, Baumeister W (1976) Inactivation of catalase monolayers by irradiation with 100 keV electrons. Proc Natl Acad Sci USA 73:823–827PubMedCrossRefGoogle Scholar
  48. 48.
    Neutze R, Wouts R, van der Spoel D, Weckert E, Hajdu J (2000) Potential for biomolecular imaging with femtosecond X-ray pulses. Nature 406:752–757PubMedCrossRefGoogle Scholar
  49. 49.
    Daberkow I, Herrmann KH, Lenz F (1993) A configurable angle-resolving detector system in STEM. Ultramicroscopy 50:75–82CrossRefGoogle Scholar
  50. 50.
    Caswell TA, Ercius P, Tate MW, Ercan A, Gruner SM, Muller DA (2009) A high-speed area detector for novel imaging techniques in a scanning transmission electron microscope. Ultramicroscopy 109:304–311PubMedCrossRefGoogle Scholar
  51. 51.
    Vink M, Derr K, Love J, Stokes DL, Ubarretxena-Belandia T (2007) A high-throughput strategy to screen 2D crystallization trials of membrane proteins. J Struct Biol 160:295–304PubMedCrossRefGoogle Scholar
  52. 52.
    Lefman J, Morrison R, Subramaniam S (2007) Automated 100-position specimen loader and image acquisition system for transmission electron microscopy. J Struct Biol 158:318–326PubMedCrossRefGoogle Scholar
  53. 53.
    Cheng A, Leung A, Fellmann D, Quispe J, Suloway C, Pulokas J, Abeyrathne PD, Lam JS, Carragher B, Potter CS (2007) Towards automated screening of two-dimensional crystals. J Struct Biol 160:324–331PubMedCrossRefGoogle Scholar
  54. 54.
    van Dyck D, de Beeck MO, Coene W (1993) A new approach to object wave-function reconstruction in electron-microscopy. Optik 93:103–107Google Scholar
  55. 55.
    Gamm B, Dries M, Schultheiss K, Blank H, Rosenauer A, Schröder RR, Gerthsen D (2010) Object wave reconstruction by phase-plate transmission electron microscopy. Ultramicroscopy 110:807–814PubMedCrossRefGoogle Scholar
  56. 56.
    Buijsse B, van Laarhoven FM, Schmid AK, Cambie R, Cabrini S, Jin J, Glaeser RM (2011) Design of a hybrid double-sideband/single-sideband (schlieren) objective aperture suitable for electron microscopy. Ultramicroscopy 111:1688–1695Google Scholar
  57. 57.
    Koster AJ, Grimm R, Typke D, Hegerl R, Stoschek A, Walz J, Baumeister W (1997) Perspectives of molecular and cellular ­electron tomography. J Struct Biol 120:276–308PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Life Science DivisionLawrence Berkeley National LaboratoryBerkeleyUSA

Personalised recommendations