Skip to main content
Log in

Development of phase plates for electron microscopes and their biological application

  • Review
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

After slow progress in the efforts to develop phase plates for electron microscopes, functional phase plates with thin carbon films have recently been reported. An electron microscope enhanced with thin-film phase plates has practical advantages. It permits collecting high-contrast images of intact biological specimens without harsh and lengthy sample preparation, such as fixation, dehydration, resin-embedding, staining and thin-sectioning. This report reviews the state of the art for phase plates in biological electron microscopy and focuses upon the conditions required for functional thin-film phase plates. The current disadvantages of thin-film phase plates are also addressed and potential solutions are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aharonov Y, Bohm D (1959) Significance of electromagnetic potentials in the quantum theory. Phys Rev 115:485–491

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Badde HG, Reimer L (1970) Der Einfluβ einer streuenden Phasenplatte auf das elektronen mikroskopische Bild. Z Naturforschg 25a:760–765

    Google Scholar 

  • Balossier G, Bonnet N (1981) Use of elecrostatic phase plate in TEM. Transmission electron microscopy Improvement of phase and topographical contrast. Optik 58:361–376

    Google Scholar 

  • Boersch H (1947) Über die Kontraste von Atomen in Electronenmikroskop. Z Naturforschg 2a:615–633

    Google Scholar 

  • Born M, Wolf E (1999) Principle of optics, 7th edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Cambie R, Downing KH, Typke D, Glaeser RM, Jin J (2007) Design of a microfabricated, two-electrode phase-contrast element suitable for electron microscopy. Ultramicroscopy 107:329–339

    Article  Google Scholar 

  • Danev R, Nagayama K (2001) Transmission electron microscopy with Zernike phase plate. Ultramicroscopy 88:243–252

    Article  Google Scholar 

  • Danev R, Nagayama K (2004) Complex observation in electron microscopy. IV. Reconstruction of complex object wave from conventional and half plane phase plate image pair. J Phys Soc Jpn 73:2718–2724

    Article  ADS  Google Scholar 

  • Danev R, Nagayama K (2008) Single particle analysis based on Zernike phase contrast transmission electron microscopy. J Struc Biol 161:211–218

    Article  Google Scholar 

  • Danev R, Okawara H, Usuda N, Kametani K, Nagayama K (2002) A novel phase-contrast transmission electron microscopy producing high-contrast topographic images of weak objects. J Biol Phys 28:627–635

    Article  Google Scholar 

  • Danov K, Danev R, Nagayama K (2001) Electric charging of thin films measured using the contrast transfer function. Ultramicroscopy 87:45–54

    Article  Google Scholar 

  • Danov K, Danev R, Nagayama K (2002) Reconstruction of the electric charge density in thin films from the contrast transfer function measurements. Ultramicroscopy 90:85–95

    Article  Google Scholar 

  • Faget J, Fagot M, Ferre J, Fert C (1962) Microscopie electronique a contraste de phase. In: Proceedings of the 5th international congress electron microscopy A-7. Academic Press, New York

  • Fernandez-Moran H (1960) Low-temperature preparation techniques for electron microscopy of biological specimens based on rapid freezing with liquid helium II. Ann NY Acad Sci 85:689–713

    Article  Google Scholar 

  • Heuser JE, Reese TS, Dennis MJ, Jan Y, Jan L, Evans L (1979) Synaptic vesicle exocytosis captured by quick freezing and correlated with quantal transmitter release. J Cell Biol 81:275–300

    Article  Google Scholar 

  • Hosokawa F, Danev R, Arai Y, Nagayama K (2005) Transfer doublet and an elaborated phase plate holder for 120kV electron-phase microscope. J Electron Microsc 54:317–324

    Article  Google Scholar 

  • Huang SH, Wang WJ, Chang CS, Hwu YK, Kai JJ, Chen FR (2006) The fabrication and application of Zernike electrostatic phase plate. J Electron Mirosc 55:273–280

    Article  Google Scholar 

  • Johnson H, Parsons D (1973) Enhanced contrast in electron microscopy of unstained biological material. J Microsc 98:1–17

    Google Scholar 

  • Kanaya K, Kawakatsu H, Ito K, Yotsumoto H (1958) Experiment on the electron phase microscope. J Appl Phys 29:1046–1049

    Article  ADS  Google Scholar 

  • Kaneko Y, Danev R, Nitta K, Nagayama K (2005) In vivo subcellular ultrastructures recognized with Hilbert-differential-contrast transmission electron microscopy. J Electron Microsc 54:79–84

    Article  Google Scholar 

  • Kaneko Y, Danev R, Nagayama K, Nakamoto H (2006) Intact carboxysome in a cyanobacterial cell visualized by Hilbert differential contrast transmission electron microscopy. J Bacteriol 188:805–808

    Article  Google Scholar 

  • Kaneko Y, Nitta K, Nagayama K (2007) Observation of in vivo DNA in ice embedded whole cyanobacterial cells by Hilbert differential contrast transmission electron microscopy (HDC-TEM). Plasma Fusion Res 54:79–85

    Google Scholar 

  • Krawkow W, Siegel BM (1975) Phase contrast in electron microscope images with an electrostatic phase plate. Optik 42:245–268

    Google Scholar 

  • Ludtke SJ, Chen DH, Song JL, Chuang DT, Chiu W (2004) Seeing GroEL at 6Å resolution by single particle electron cryomicroscopy. Structure 12:1129–1136

    Article  Google Scholar 

  • Majorovits E, Barton B, Schultheiß K, Perez-Willard F, Gerthsen D, Schröder RR (2007) Optimizing phase contrast in transmission electron microscopy with an electrostatic (Boersch) phase plate. Ultramicroscopy 107:213–226

    Article  Google Scholar 

  • Matumoto T, Tonomura A (1996) The phase constancy of electron waves traveling through Boersch’s electrostatic phase plate. Ultramicroscopy 63:5–10

    Article  Google Scholar 

  • Mott NF, Massey HSW (1965) The theory of atomic collisions, 3rd edn. Clarendon Press, Oxford

    Google Scholar 

  • Nagayama K (2005a) Phase contrast enhancement with phase plates in electron microscopy. Ad Imaging Electr Phys 138:69–146

    Google Scholar 

  • Nagayama K (2005b) A phase plate for electron microscopes and its fabrication method (in Japanese), JPN-patent application, Tokugan 2005–321402

  • Nomarski G (1952) Interferométre á polarization, French patent 1.059.123

  • Osakabe N, Nomura S, Matsuda T, Endo J (1985) Phase contrast electron microscope, JPN-patent application, Tokugan 1985–7048 (in Japanese)

  • Ranson NA, Farr GW, Roseman AM, Gowen B, Fenton WA, Horwich AL, Saibil HR (2001) ATP-bound states of GroEL captured by cryo-electron microscopy. Cell 107:869–879

    Article  Google Scholar 

  • Reimer L (1997) Transmission electron microscopy, 4th edn. Springer, Berlin

    Google Scholar 

  • Saibil HR (2006) Allosteri signaling of ATP hydrolysis in GroEL–GroES complexes. Nat Struct Mol Biol 13:147–152

    Article  Google Scholar 

  • Scherzer O (1949) The theoretical resolution limit of the electron microscope. J Appl Phys 20:20–29

    Article  MATH  ADS  Google Scholar 

  • Shimada A, Niwa H, Tsujita K, Suetsugu S, Nitta K, Suetsugu KH, Akasaka R, Nishino Y, Toyama M, Chen L, Liu ZJ, Wang BC, Yamamoto M, Terada T, Miyazawa A, Tanaka A, Sugano S, Shirouzu M, Nagayama K, Takenawa T, Yokoyama S (2007) Curved EFC/F-BAR-domain dimers are joined end to end into a filament for membrane invagination in endocytosis. Cell 129:761–772

    Article  Google Scholar 

  • Sieber P (1974) High resolution electron microscopy with heated apertures and reconstruction of single-sideband micrographs. In: Proceedings of the 8th international congress electron microscopy, vol 1. Academic Press, New York, pp 274–275

  • Smith FH (1947) Microscopes, British patent 639 014, Class 97(i) CroupXX

  • Stagg SM, Lander GC, Pulokas J, Fellmann D, Cheng A, Qulspe JD, Mallick SP, Avila RM, Crragher B, Potter CS (2006) Automated cryoEM data acquisition and analysis of 284742 particles of GroEL. J Struct Biol 155:470–481

    Article  Google Scholar 

  • Tonomura A, Osakabe N, Matsuda T, Kawasaki T, Endo J, Yano S, Yamada H (1986) Evidence for Aharonov–Bohm effect with magnetic field completely shielded from electron wave. Phys Rev Lett 56:792–795

    Article  ADS  Google Scholar 

  • Unwin PNT (1970) An electrostatic phase plate for the electron microsope. Bunsen-Ges 74:1137–1141

    Google Scholar 

  • Van Harreveld A, Crowell J (1964) Electron microscopy after rapid freezing on a metal surface and substitution fixation. Anat Rec 149:381–386

    Article  Google Scholar 

  • Willash D (1975) High resolution electron microscopy with profiled phase plates. Optik 44:17–36

    Google Scholar 

  • Yasuta H, Okawara H, Nagayama K (2006) Aharonov–Bohm phase plate in transmission electron microscopy. In: Proceedings of the 16th international microscope congress, vol 1. Japan Society of Microscopy, Sapporo, p 90, 7 Sept 2006

  • Zernike F (1942) Phase contrast, a new method for the microscopic observation of transparent objects. Physica 9:686–698, 974–986

    Google Scholar 

Download references

Acknowledgments

I am grateful to the following collaborators for their contributions to the development and biological application of phase-contrast TEM with phase plates: Development Radostin Danev, Krassimir Danov, Rasmus Schroeder, Shozo Sugitani, Hiroshi Okawara, Toshiyuki Itoh, Toshikazu Honda, Toshiaki Suzuki, Yoshiyasu Harada, Yoshihiro Arai, Fumio Hosokawa, Sohei Motoki, and Kazuo Ishizuka; and Applications Koji Nitta, Yasuko Kaneko, Hitoshi Nakamoto, Atsushi Shimada, Shigeyuki Yokoyama, Nobuteru Usuda, Kimie Atsuzawa, Ayami Nakazawa, and Kiyokazu Kametani. This work was supported in part by a Grant-in-Aid for Creative Scientific Research (No. 13GS0016) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuniaki Nagayama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagayama, K. Development of phase plates for electron microscopes and their biological application. Eur Biophys J 37, 345–358 (2008). https://doi.org/10.1007/s00249-008-0264-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-008-0264-5

Keywords

Navigation