Skip to main content

In Vivo Microdialysis to Study Striatal Dopaminergic Neurodegeneration

  • Protocol
  • First Online:
Microdialysis Techniques in Neuroscience

Part of the book series: Neuromethods ((NM,volume 75))

Abstract

Microdialysis cerebral technique has been widely employed in order to study neurotransmitter release. This technique presents numerous advantages such as it allows work with sample in vivo from freely moving animals. Different drugs in different points implanted probes in several brain areas can be infused simultaneously by means of microdialysis. Parkinson’s disease (PD) is a progressive neurodegenerative disorder that is primarily characterized by the degeneration of dopamine (DA) neurons in the nigrostriatal system, which in turn produces profound neurochemical changes within the basal ganglia, representing the neural substrate for Parkinsonian motor symptoms. Over the years, a broad variety of experimental models of the disease have been developed and applied in diverse animal species. The two most common toxin models used employ 6-hydroxydopamine (6-OHDA) and the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/1-methyl-4-phenilpyridinium ion (MPTP/MPP+), either given systemically or locally applied into the nigrostriatal pathway, to resemble PD features in animals. Both neurotoxins selectively and rapidly destroy catecholaminergic neurons, although with different mechanisms. Since in vivo microdialysis coupled to high-performance liquid chromatography (HPLC) is an established technique for studying physiological, pharmacological, and pathological changes of a wide range of low molecular weight substances in the brain extracellular fluid, here we describe a rapid and simple microdialysis technique that allows the direct quantitative study of the damage produced by 6-OHDA and MPP+ toxins on dopaminergic (DAergic) striatal terminals of rat brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blandini F, Nappi G, Tassorelli C, Martignoni E (2000) Functional changes of the basal ganglia circuitry in Parkinson’s disease. Prog Neurobiol 62:63–88

    Article  PubMed  CAS  Google Scholar 

  2. Di Giovanni G (2008) Will it ever become possible to prevent dopaminergic neuronal degeneration? CNS Neurol Disord Drug Targets 7:28–44

    Article  PubMed  Google Scholar 

  3. Schober A (2004) Classic toxin-induced animal models of Parkinson’s disease: 6-OHDA and MPTP. Cell Tissue Res 318:215–224

    Article  PubMed  Google Scholar 

  4. Beal MF (2001) Experimental models of Parkinson’s disease. Nat Rev Neurosci 2:325–334

    Article  PubMed  CAS  Google Scholar 

  5. Ungerstedt U (1991) Microdialysis: principles and applications for studies in animals and man. J Intern Med 230:365–373

    Article  PubMed  CAS  Google Scholar 

  6. Hammarlund-Udenaes M (2000) The use of microdialysis in CNS drug delivery studies: pharmacokinetic perspectives and results with analgesics and antiepileptics. Adv Drug Deliv Rev 45:283–294

    Article  PubMed  CAS  Google Scholar 

  7. Di Giovanni G, Esposito E, Di Matteo V (2009) In vivo microdialysis in Parkinson’s research. J Neural Transm Suppl 73:223–243

    PubMed  Google Scholar 

  8. Giovanni A, Sonsalla PK, Heikkila RE (1994) Studies on species sensitivity to the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. 2. Central administration of 1- methyl-4-phenylpyridinium. J Pharmacol Exp Ther 270:1008–1014

    PubMed  CAS  Google Scholar 

  9. Rollema H, Kuhr WG, Kranenborg G, De Vries J, Van den Berg C (1988) MPP+-induced efflux of dopamine and lactate from rat striatum have similar time courses as shown by in vivo brain dialysis. J Pharmacol Exp Ther 245:858–866

    PubMed  CAS  Google Scholar 

  10. Tobón-Velasco JC, Silva-Adaya D, Carmona-Aparicio L, García E, Galván-Arzate S, Santamaría A (2010) Early toxic effect of 6-hydroxydopamine on extracellular concentrations of neurotransmitters in the rat striatum: an in vivo microdialysis study. Neurotoxicology 31:715–723

    Article  PubMed  Google Scholar 

  11. Benveniste H, Huttemeier PC (1990) Microdialysis: theory and application. Prog Neurobiol 35:195–215

    Article  PubMed  CAS  Google Scholar 

  12. Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates. Academic, New York

    Google Scholar 

  13. Di Matteo V, Pierucci M, Di Giovanni G, Di Santo A, Poggi A, Benigno A, Esposito E (2006) Aspirin protects striatal dopaminergic neurons from neurotoxin-induced degeneration: an in vivo microdialysis study. Brain Res 1095:167–177

    Article  PubMed  Google Scholar 

  14. Di Matteo V, Benigno A, Pierucci M, Giuliano DA, Crescimanno G, Esposito E, Di Giovanni G (2006) 7-nitroindazole protects striatal dopaminergic neurons against MPP+-induced degeneration: an in vivo microdialysis study. Ann N Y Acad Sci 1089:462–471

    Article  PubMed  Google Scholar 

  15. Chiueh CC, Krishna G, Tulsi P, Obata T, Lang K, Huang S-J, Murphy DL (1992) Intracranial microdialysis of salicylic acid to detect hydroxyl radical generation through dopamine autooxidation in the caudate nucleus: effects of MPP+. Free Radic Biol Med 13:581–583

    Article  PubMed  CAS  Google Scholar 

  16. Teismann P, Schwaninger M, Weih F, Ferger B (2001) Nuclear factor-kappaB activation is not involved in a MPTP model of Parkinson’s disease. Neuroreport 12:1049–1053

    Article  PubMed  CAS  Google Scholar 

  17. Obata T (2006) Nitric oxide and MPP+-induced hydroxyl radical generation. J Neural Transm 113:1131–1144

    Article  PubMed  CAS  Google Scholar 

  18. Halliwell B, Kaur H, Ingelman-Sundberg M (1991) Hydroxylation of salicylate as an assay for hydroxyl radicals: a cautionary note. Free Radic Biol Med 10:439–441

    Article  PubMed  CAS  Google Scholar 

  19. Halliwell B, Kaur H (1997) Hydroxylation of salicylate and phenylalanine as assays for hydroxyl radicals: a cautionary note visited for the third time. Free Radic Res 27:239–244

    Article  PubMed  CAS  Google Scholar 

  20. Montgomery J, Ste-Marie L, Boismenu D, Vachon L (1995) Hydroxylation of aromatic compounds as indices of hydroxyl radical production: a cautionary note revisited. Free Radic Biol Med 19:927–933

    Article  PubMed  CAS  Google Scholar 

  21. Ste-Marie L, Boismenu D, Vachon L, Montgomery J (1996) Evaluation of sodium 4-hydroxybenzoate as an hydroxyl radical trap using gas chromatography-mass spectrometry and high-performance liquid chromatography with electochemical detection. Anal Biochem 241:67–74

    Article  PubMed  CAS  Google Scholar 

  22. Amin AR, Vyas P, Attur M, Leszczynska-Piziak J, Patel IR, Weissmann G, Abramson SB (1995) The mode of action of aspirin-like drugs: effect on inducible nitric oxide synthase. Proc Natl Acad Sci U S A 92(17):7926–7930

    Article  PubMed  CAS  Google Scholar 

  23. Liu M, Liu S, Peterson SL, Miyake M, Liu KJ (2002) On the application of 4-hydroxybenzoic acid as a trapping agent to study hydroxyl radical generation during cerebral ischemia and reperfusion. Mol Cell Biochem 234(235):379–385

    Article  PubMed  Google Scholar 

  24. Bogdanov MB, Ferrante RJ, Mueller G, Ramos LE, Martinou JC, Beal MF (1999) Oxidative stress is attenuated in mice overexpressing BCL-2. Neurosci Lett 262:33–36

    Article  PubMed  CAS  Google Scholar 

  25. Santiago M, Westerink BHC, Rollema H (199l) Responsiveness of striatal dopamine release in awake animals after chronic 1-methyl-4-phenylpyridinium ion-induced lesions of the substantia nigra. J Neurochem 56:1336–1134

    Article  Google Scholar 

Download references

Acknowledgments

Authors are indebted to the EU COST Action CM1103 “Structure-based drug design for diagnosis and treatment of neurological diseases: dissecting and modulating complex function in the monoaminergic systems of the brain” for supporting our international collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Di Matteo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Di Giovanni, G., Pierucci, M., Pessia, M., Di Matteo, V. (2013). In Vivo Microdialysis to Study Striatal Dopaminergic Neurodegeneration. In: Di Giovanni, G., Di Matteo, V. (eds) Microdialysis Techniques in Neuroscience. Neuromethods, vol 75. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-173-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-173-8_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-172-1

  • Online ISBN: 978-1-62703-173-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics