Skip to main content

Production of Pathogen-Free Horticultural Crops by Cryotherapy of In Vitro-Grown Shoot Tips

  • Protocol
  • First Online:
Protocols for Micropropagation of Selected Economically-Important Horticultural Plants

Abstract

Horticultural crops are economically valuable for sustainable agricultural production. Plant diseases caused by Pathogens including virus, phytoplasma and bacterium have been a great threat to production of horticultural crops. The efficient use of pathogen-free plant materials has overcome the menace of plant diseases and has sustained crop production. Cryotherapy of shoot tips, a novel application of cryopreservation technique, has become a new plant biotechnology tool for plant pathogen eradication. When compared with the traditional methods, cryotherapy of shoot tips produces high frequency of pathogen-free plants, which is independent of shoot tip size and cryogenic methods. Cryotherapy of shoot tips has six major steps to produce pathogen-free plants: (1) introduction of infected plant materials into in vitro cultures; (2) excision of shoot tips; (3) cryotherapy; (4) post-culture for plant regeneration; (5) indexing of pathogens in regenerated plants after cryotherapy; and (6) establishment of pathogen-free nuclear stock plants. The key steps 2, 3, and 4 are similar to cryopreservation, and play a major role in obtaining high pathogen eradication frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Loebenstein G (2009) Origin, distribution and economic importance. In: Loebenstein G, Thottappilly G (eds) The sweetpotato. Springer, New York

    Chapter  Google Scholar 

  2. Zhang LM, Wang QM, Liu QC, Wang QC (2009) Sweetpotato in China. In: Loebenstein G, Thottappilly G (eds) The sweetpotato. Springer, New York

    Google Scholar 

  3. Harriman RW, Bolar JP, Smith FD (2006) Importance of biotechnology to the horticultural plant industry. In: Li Y, Pei Y (eds) Plant biotechnology in ornamental horticulture. Haworth Food & Agricultural Productions Press, New York

    Google Scholar 

  4. Huang SU, Calvin L, Regmi A, Shane M, Shields D, Stout J, Worth T (2004) Global trade patterns in fruit and vegetables. http://www.ers.usda.gov/publications/WRS0406

  5. Németh M (1984) Virus, mycoplasma and rickettsia diseases of fruit trees. Martinus Nijhoff, Dordrecht

    Google Scholar 

  6. Waterworth HE, Hadidi A (1998) Economical losses due to plant viruses. In: Hadidi A, Khetarpal RK, Koganezawa H (eds) Plant virus disease control. APS, St. Paul

    Google Scholar 

  7. Hull R (2002) Matthew’s plant virology. Academic, New York

    Google Scholar 

  8. Streten C, Gibb KS (2006) Phytoplasma diseases in subtropical and tropical Australia. Aust Plant Pathol 35:129–146

    Article  Google Scholar 

  9. Bové JM (2006) Huanglongbing: a destructive newly-emerging century-old disease. J Plant Pathol 88:7–37

    Google Scholar 

  10. Hane DC, Hamm PB (1999) Effects of seedborne potato virus Y infection in two potato cultivars expressing mild disease symptoms. Plant Dis 83:43–45

    Article  Google Scholar 

  11. Moreno P, Ambrós S, Albiach-Martí MR, Guerri J, Pëna L (2007) Citrus tristeza virus: a pathogen that changed the course of the citrus industry. Mol Plant Pathol 9:251–268

    Article  Google Scholar 

  12. Callaway E (2008) The green menace. Nature 452:148–150

    Article  PubMed  CAS  Google Scholar 

  13. Hadidi A, Khetarpal RK, Koganezawa H (1998) Plant Virus Disease Control. APS, St. Paul

    Google Scholar 

  14. Loebenstein G (2001) Potato leafroll virus. In: Berger PH, Brunt A, Lawson RH, Loebenstein G (eds) Virus and virus-like diseases of potatoes and production of seed-potatoes. Kluwer, Dordrecht

    Google Scholar 

  15. Loebenstein G, Fuentes S, Cohen J, Salazar LF (2003) Sweet potato. In: Loebenstein G, Thottappilly G (eds) Virus and virus-like diseases of major crops in developing countries. Kluwer Academic, Dordrecht

    Google Scholar 

  16. White PP (1934) Multiplication of the viruses of tobacco and aucuba mosaic in growing excised tomato roots. Phytopathology 24:1003–1011

    Google Scholar 

  17. Holmes FO (1948) Elimination of spotted wilt from a stock of dahlia. Phytopathology 38:314

    Google Scholar 

  18. Morel G (1948) Recherches sur la culture associée de parasities obligatoires et de tissue vététaux. Ann Epiphytics 1:123–234

    Google Scholar 

  19. Morel G, Martin C (1952) Guerison de dahlias atteints d’une maladie a virus. C R Acad Sci 235:1324–1325

    CAS  Google Scholar 

  20. Morel G, Martin C (1955) Guerison de pommes de terre atteints de maladie a virus. C R Acad Sci 41:472–475

    Google Scholar 

  21. Faccioli VC, Marani F (1998) Virus elimination by meristem tip culture and tip micrografting. In: Hadidi A, Khetarpal RK, Koganezawa H (eds) Plant virus disease control. APS, St. Paul

    Google Scholar 

  22. Mink GI, Wample R, Howell WE (1998) Heat treatment of perennial plants to eliminate phytoplasms, viruses and viroids while maintaining plant survival. In: Hadidi A, Khetarpal RK, Koganezawa H (eds) Plant Virus Disease Control. APS, St. Paul

    Google Scholar 

  23. Li WB, Hartung JS, Levy L (2006) Quantitative real-time PCR for detection and identification of Candidatus Liberibacter species associated with citrus Huanglongbing. J Microbiol Methods 66:104–115

    Article  PubMed  CAS  Google Scholar 

  24. Hogenhout SA, Oshima K, Ammar ED, Kakizawa S, Kingdom HN, Namba S (2008) Phytoplasmas: bacteria that manipulate plants and insects. Mol Plant Pathol 9:403–423

    Article  PubMed  CAS  Google Scholar 

  25. Mink GI (1998) Virus certification of deciduous fruit trees in the United State and Canada. In: Hadidi A, Khetarpal RK, Koganezawa H (eds) Plant Virus Disease Control. APS, St. Paul

    Google Scholar 

  26. Cutting CV, Montgomery HBS (1973) More and better fruit with EMLA. East Malling/Long Ashton Research Station, East Malling/Long Ashton

    Google Scholar 

  27. Slack SA, Singh RP (1998) Control of viruses affecting potatoes through seed potato certification programs. In: Hadidi A, Khetarpal RK, Koganezawa H (eds) Plant Virus Disease Control. APS, St. Paul

    Google Scholar 

  28. Faccioli G (2001) Control of potato viruses using meristem culture and stem-cutting cultures, thermotherapy and chemotherapy. In: Loebenstein G, Berger PH, Brunt A, Lawson RH (eds) Virus and virus-like diseases of potatoes and production of seed-potatoes. Kluwer, Dordrecht

    Google Scholar 

  29. Barba M (1998) Virus certification of fruit tree propagative materials In Western Europe. In: Hadidi A, Khetarpal RK, Koganezawa H (eds) Plant virus disease control. APS, St. Paul

    Google Scholar 

  30. Martelli GP, Walter B (1998) Virus certification of grapevines. In: Hadidi A, Khetarpal RK, Koganezawa H (eds) Plant Virus Disease Control. APS, St. Paul

    Google Scholar 

  31. Roistacher CN (1998) Indexing for viruses in citrus. In: Hadidi A, Khetarpal RK, Koganezawa H (eds) Plant Virus Disease Control. APS, St. Paul

    Google Scholar 

  32. Spiegel S (1998) Virus certification of strawberries. In: Hadidi A, Khetarpal RK, Koganezawa H (eds) Plant Virus Disease Control. APS, St. Paul

    Google Scholar 

  33. Krczal G (1998) Virus certification of ornamental plants-the Europe strategy. In: Hadidi A, Khetarpal RK, Koganezawa H (eds) Plant Virus Disease Control. APS, St. Paul

    Google Scholar 

  34. Wang QM, Zhang LM, Wang B, Yin ZF, Feng CH, Wang QC (2010) Sweetpotato viruses in China. Crop Prot 29:110–114

    Article  Google Scholar 

  35. Cretazzo E, Padilla C, Carambula C, Hita I, Salmerón E, Cifre J (2010) Comparison of the effects of different virus infections on performance of three Majorcan grapevine cultivars in field conditions. Ann Appl Biol 156:1–12

    Article  CAS  Google Scholar 

  36. Chiari A, Bridgen MP (2002) Meristem culture and virus eradication in Alstroemeria. Plant Cell Tiss Org 68:49–55

    Article  Google Scholar 

  37. Engelmann F (1997) In vitro conservation methods. In: Callow JA, Ford-Lloyd BV, Newbury HJ (eds) Biotechnology and Plant Genetic Resources. CAB International, UK

    Google Scholar 

  38. Wang QC, Perl A (2006) Cryopreservation in floricultural crops. In: Teixeira da Silva JA (ed) Floricultural, ornamental and plant biotechnology: advances and topics. Global Science Books, London

    Google Scholar 

  39. Benson EE (2008) Cryopreservation of phytodiversity: a critical appraisal of theory and practice. Crit Rev Plant Sci 27:141–219

    Article  CAS  Google Scholar 

  40. Wang QC, Panis B, Engelmann F, Lambardi M, Valkonen JPT (2009) Cryotherapy of shoot tips: a technique for pathogen eradication to produce healthy planting materials and prepare healthy plant genetic resources for cryopreservation. Ann Appl Biol 154:351–363

    Article  Google Scholar 

  41. Wang QC, Valkonen JPT (2009) Cryotherapy of shoot tips: novel pathogen eradication method. Trends Plant Sci 14:119–122

    Article  PubMed  CAS  Google Scholar 

  42. Yin ZF, Feng CH, Wang B, Wang QC (2011) Cryotherapy of shoot tips: a newly emerging technique for efficient elimination of plant pathogens. Acta Horti 908:373–383

    Google Scholar 

  43. Sakai A (1960) Survival of the twigs of woody plants at −196°C. Nature 185:392–394

    Google Scholar 

  44. Engelmann F, Takagi H (2000) Cryo­preservation of tropical germplasm: current research progress and application. IPGRI, Rome

    Google Scholar 

  45. Towill LE, Bajaj YPS (2002) Cryopreservation of plant germplasm II. In: Towill LE, Bajaj YPS (eds) Biotechnology in Agriculture and Forestry 50. Springer, Berlin

    Google Scholar 

  46. Reed BM (2008) Plant Cryopreservation: A Practical Guide. Springer, Berlin, Germany

    Book  Google Scholar 

  47. Wang B, Yin ZF, Feng CH, Shi X, Li YP, Wang QC (2008) Cryopreservation of potato shoot tips. In: Benkeblia N, Tennant P (eds) Potato I. Fruit, vegetable and cereal science and biotechnology, vol 2 (Special Issue 1), Global Science, London

    Google Scholar 

  48. Brison M, Boucaud M-T, Pierronnet A, Dosba F (1997) Effect of cryopreservation on the sanitary state of a cv Prunus rootstock experimentally contaminated with plum pox Potyvirus. Plant Sci 123:189–196

    Article  CAS  Google Scholar 

  49. Helliot B, Panis B, Poumay Y, Swenen R, Lepoivre P, Frison E (2002) Cryopreservation for the elimination of cucumber mosaic and banana streak viruses from banana (Musa spp.). Plant Cell Rep 20:1117–1122

    Article  CAS  Google Scholar 

  50. Wang QC, Mawassi M, Li P, Gafny R, Sela I, Tanne E (2003) Elimination of grapevine virus A (GVA) by cryopreservation of in vitro-grown shoot tips of Vitis vinifera L. Plant Sci 165:321–327

    Article  CAS  Google Scholar 

  51. Wang QC, Liu Y, Xie YH, You MS (2006) Cryotherapy of potato shoot tips for efficient elimination of Potato leaf roll virus (PLRV) and Potato virus Y (PVY). Potato Res 49:119–129

    Article  Google Scholar 

  52. Wang QC, Valkonen JPT (2007) Elimination of viruses and phytoplasma by cryotherapy of in vitro-grown shoot tips: analysis of all cases. Adv Hortic Sci 21:265–269

    Google Scholar 

  53. Wang QC, Valkonen JPT (2008) Efficient elimination of sweet potato little leaf phytoplasma by cryotherapy of shoot tips (Ipomoea batatas L.). Plant Pathol 57:338–347

    Article  Google Scholar 

  54. Ding F, Jin SX, Hong N, Zhong Y, Cao Q, Yi GJ, Wang GP (2008) Vitrification-cryopreservation, an efficient method for eliminating Candidatus Liberibacter asiaticus, the citrus Huanglongbing pathogen, from in vitro adult shoot tips. Plant Cell Rep 27:241–250

    Article  PubMed  CAS  Google Scholar 

  55. Helliot B, Swenen R, Poumay Y, Frison E, Lepoivre P, Panis B (2003) Ultrastructural changes associated with cryopreservation of banana (Musa spp.) highly proliferating meristems. Plant Cell Rep 21:690–698

    PubMed  CAS  Google Scholar 

  56. Wang QC, Laamanen J, Uosukainen M, Valkonen JPT (2005) Cryopreservation of in vitro-grown shoot tips of raspberry (Rubus idaeus L.) by encapsulation-vitrification and encapsulation-dehydration. Plant Cell Rep 24:280–288

    Article  PubMed  Google Scholar 

  57. Wang QC, Valkonen JPT (2008) Elimination of two viruses which interact synergistically from sweetpotato by shoot tip culture and cryotherapy. J Virol Methods 154:135–145

    Article  PubMed  CAS  Google Scholar 

  58. Wang QC, Cuellar WJ, Rajamäki ML, Hiraka Y, Valkonen JPT (2008) Combined thermotherapy and cryotherapy for virus eradication: relation of virus distribution, subcellular changes, cell survival and viral RNA degradation in shoot tips to efficient production of virus-free plants. Mol Plant Pathol 9:237–250

    Article  PubMed  CAS  Google Scholar 

  59. Helliot B, Panis B, Busogoro JP, Sobry S, Poumay Y, Raes M, Swennen R, Lepoivre P (2007) Immunogold silver staining associated with epi-fluorescence for cucumber mosaic virus localisation on semi-thin sections of banana tissues. Eur J Histochem 51:153–158

    PubMed  CAS  Google Scholar 

  60. Harding K (2004) Genetic integrity of cryopreserved plant cells: a review. Cryo Letters 25:3–22

    PubMed  Google Scholar 

  61. Laimer M (2003) Detection and Elimination of Viruses and Phytoplasmas from Pome and Stone Fruit Trees. Hortic Rev 28:187–224

    Google Scholar 

  62. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco cell cultures. Physiol Plant 15: 473–497

    Article  CAS  Google Scholar 

  63. Wang QC, Tanne E, Arav A, Gafny R (2000) Cryopreservation of in vitro-grown shoot tips of grapevine by encapsulation-dehydration. Plant Cell Tissue Org Cult 63:41–46

    Article  CAS  Google Scholar 

  64. Chiari A, Bridgen MP (2002) Meristem culture and virus eradication in Alstroemeria. Plant Cell Tissue Org Cult 68:49–55

    Article  Google Scholar 

  65. Wang B, Ma YC, Zhang ZB, Wu ZM, Wu YF, Wang QC, Li MF (2011) Potato viruses in China. Crop Prot 30:1117–1123

    Google Scholar 

  66. Park H, Yoon J, Kim H, Baek K (2008) Multiplex RT-PCR assay for the detection of Apple stem grooving virus and Apple chlorotic leaf spot virus in infected Korean apple cultivars. Plant Pathol J 22:168–173

    Article  Google Scholar 

Download references

Acknowledgments

The present study was financially supported by the Key Project “13115” of Shaanxi Province (project No. 2009ZDKG-10) and President Foundation of Northwest A & F University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiaochun Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Feng, C. et al. (2012). Production of Pathogen-Free Horticultural Crops by Cryotherapy of In Vitro-Grown Shoot Tips. In: Lambardi, M., Ozudogru, E., Jain, S. (eds) Protocols for Micropropagation of Selected Economically-Important Horticultural Plants. Methods in Molecular Biology, vol 994. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-074-8_35

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-074-8_35

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-073-1

  • Online ISBN: 978-1-62703-074-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics