Advertisement

Rational Design of Peptide Ligands Against a Glycolipid by NMR Studies

  • Wenyong Tong
  • Tara Sprules
  • Kalle Gehring
  • H. Uri SaragoviEmail author
Protocol
  • 2.1k Downloads
Part of the Methods in Molecular Biology book series (MIMB, volume 928)

Abstract

Ganglioside GD2 is a cell surface glycosphingolipid that is targeted clinically for cancer diagnosis, prognosis, and therapy. The conformations of free GD2 and of GD2 bound to anti-GD2 mAb 3F8 were resolved by saturation transfer difference nuclear magnetic resonance and molecular modeling. Then small molecule cyclic peptide ligands that bind to GD2 selectively were designed, and shown to affect GD2-mediated signal transduction. The solution structure of the GD2-bound conformation of the peptide ligands showed an induced-fit binding mechanism. This work furthers the concept of rationally designing ligands for carbohydrate targets; and may be expanded to other clinically relevant gangliosides.

Key words

Saturation transfer difference NMR Transferred NOE Antibody–carbohydrate interactions Peptide–carbohydrate interaction NMR structure calculations Molecular modeling Ganglioside GD2 Peptide mimetics Cancer 

References

  1. 1.
    Pellecchia M, Bertini I, Cowburn D, et al. Perspectives on NMR in drug discovery: a technique comes of age. Nat Rev Drug Discov. 2008;7:738–45.PubMedCrossRefGoogle Scholar
  2. 2.
    Meyer B, Peters T. NMR spectroscopy techniques for screening and identifying ligand binding to protein receptors. Angew Chem Int Ed Engl. 2003;42:864–90.PubMedCrossRefGoogle Scholar
  3. 3.
    Markwick PR, Malliavin T, Nilges M. Structural biology by NMR: structure dynamics and interactions. PLoS Comput Biol. 2008;4:e1000168.PubMedCrossRefGoogle Scholar
  4. 4.
    Tong W, Gagnon M, Sprules T, et al. Small-molecule ligands of GD2 ganglioside designed from NMR studies exhibit induced-fit binding and bioactivity. Chem Biol. 2010;17:183–94.PubMedCrossRefGoogle Scholar
  5. 5.
    Modak S, Cheung NK. Disialoganglioside directed immunotherapy of neuroblastoma. Cancer Invest. 2007;25:67–77.PubMedCrossRefGoogle Scholar
  6. 6.
    Hakomori S-I, Zhang Y. Glycosphingolipid antigens and cancer therapy. Chem Biol. 1997;4:97–104.PubMedCrossRefGoogle Scholar
  7. 7.
    Birklé S, Zeng G, Gao L, et al. Role of tumor-associated gangliosides in cancer progression. Biochimie. 2003;85:455–63.PubMedCrossRefGoogle Scholar
  8. 8.
    Jayalakshmi V, Krishna NR. Complete relaxation and conformational exchange matrix (CORCEMA) analysis of intermolecular saturation transfer effects in reversibly forming ligand-receptor complexes. J Magn Reson. 2002;155:106–18.PubMedCrossRefGoogle Scholar
  9. 9.
    Saragovi HU, Greene MI, Chrusciel RA, Kahn M. Loops and secondary structure mimetics: development and applications in basic science and rational drug design. Biotechnol (N Y). 1992;10:773–8.CrossRefGoogle Scholar
  10. 10.
    Sonnino S, Cantù L, Corti M, et al. Aggregative properties of gangliosides in solution. Chem Phys Lipids. 1994;71:21–45.PubMedCrossRefGoogle Scholar
  11. 11.
    Yan J, Kline AD, Mo H, et al. The effect of relaxation on the epitope mapping by saturation transfer difference NMR. J Magn Reson. 2003;163:270–6.PubMedCrossRefGoogle Scholar
  12. 12.
    Wang J, Wang W, Kollman PA, Case DA. Automatic atom type and bond type perception in molecular mechanical calculations. J Mol Graph Model. 2006;25:247–60.PubMedCrossRefGoogle Scholar
  13. 13.
    Case DA, Cheatham 3rd TE, Darden T, et al. The Amber biomolecular simulation programs. J Comput Chem. 2005;26:1668–88.PubMedCrossRefGoogle Scholar
  14. 14.
    Rieping W, Habeck M, Bardiaux B, et al. ARIA2: Automated NOE assignment and data integration in NMR structure calculation. Bioinformatics. 2007;23:381–2.PubMedCrossRefGoogle Scholar
  15. 15.
    Feig M, Karanicolas J, Brooks CL. MMTSB Tool Set: enhanced sampling and multiscale modeling methods for applications in structural biology. J Mol Graph Model. 2004;22:377–95.PubMedCrossRefGoogle Scholar
  16. 16.
    Delaglio F, Grezesiek S, Vuister GW, et al. NMRpipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR. 1995;6:277–93.PubMedCrossRefGoogle Scholar
  17. 17.
    Houliston RS, Yuki N, Hirama T, et al. Recognition characteristics of monoclonal antibodies that are cross-reactive with gangliosides and lipooligosaccharide from Campylobacter jejuni strains associated with Guillain-Barre and Fisher syndromes. Biochemistry. 2007;46:36–44.PubMedCrossRefGoogle Scholar
  18. 18.
    Bernatchez S, Szymanski CM, Ishiyama N, et al. A single bifunctional UDP-GlcNAc/Glc 4-Epimerase supports the synthesis of three cell surface glycoconjugates in Campylobacter jejuni. J Biol Chem. 2005;280:4792–802.PubMedCrossRefGoogle Scholar
  19. 19.
    Blixt O, Vasiliu D, Allin K, et al. Chemoenzymatic synthesis of 2-azidoethyl-ganglio-oligosaccharides GD3, GT3, GM2, GD2, GT2, GM1, and GD1a. Carbohydr Res. 2005;340:1963–72.PubMedCrossRefGoogle Scholar
  20. 20.
    Mayer M, Meyer B. Group epitope mapping by saturation transfer difference NMR to identify segments of a ligand in direct contact with a protein receptor. J Am Chem Soc. 2001;123:6108–17.PubMedCrossRefGoogle Scholar
  21. 21.
    Siebert HC, Reuter G, Schauer R, et al. Solution conformations of GM3 ganglioside containing different sialic acid residues as revealed by NOE-based distance mapping molecular mechanics and molecular dynamics calculations. Biochemistry. 1992;31:6962–71.PubMedCrossRefGoogle Scholar
  22. 22.
    Jakalian A, Jack DB, Bayly CI. Fast efficient generation of high-quality atomic charges AM1-BCC model: II Parameterization and validation. J Comput Chem. 2002;23:1623–41.PubMedCrossRefGoogle Scholar
  23. 23.
    Naim M, Bhat S, Rankin KN, et al. Solvated interaction energy (SIE) for scoring protein-ligand binding affinities. 1. Exploring the parameter space. J Chem Inf Model. 2007;47:122–33.PubMedCrossRefGoogle Scholar
  24. 24.
    Coley AM, Parisi K, Masciantonio R, et al. The most polymorphic residue on Plasmodium falciparum apical membrane antigen 1 determines binding of an invasion-inhibitory antibody. Infect Immun. 2006;74:2628–36.PubMedCrossRefGoogle Scholar
  25. 25.
    Muller R, Debler EW, Steinmann M, et al. Bifunctional catalysis of proton transfer at an antibody active site. J Am Chem Soc. 2007;129:460–1.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Wenyong Tong
    • 1
    • 2
  • Tara Sprules
    • 3
  • Kalle Gehring
    • 4
    • 3
  • H. Uri Saragovi
    • 1
    • 5
    Email author
  1. 1.Lady Davis Institute-Jewish General HospitalMontréalCanada
  2. 2.Departments of Pharmacology and Therapeutics, and the Cancer CenterMcGill UniversityMontrealCanada
  3. 3.Quebec/Eastern Canada High Field NMR FacilityMcGill UniversityMontrealCanada
  4. 4.Department of Biochemistry and the Cancer CenterMcGill UniversityMontrealCanada
  5. 5.Departments of Pharmacology and Therapeutics, Oncology and the Cancer CenterMcGill UniversityMontréalCanada

Personalised recommendations