Skip to main content

Bioprospecting Metagenomics for New Glycoside Hydrolases

  • Protocol
  • First Online:
Biomass Conversion

Part of the book series: Methods in Molecular Biology ((MIMB,volume 908))

Abstract

To efficiently deconstruct recalcitrant plant biomass to fermentable sugars in industrial processes, biocatalysts of higher performance and lower cost are required. The genetic diversity found in the metagenomes of natural microbial biomass decay communities may harbor such enzymes. The aim of this chapter is to describe strategies, based on metagenomic approaches, for the discovery of glycoside hydrolases (GHases) from microbial biomass decay communities, especially those from unknown or never-been-cultivated microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Himmel ME (ed) (2008) Biomass recalcitrance - deconstructing the plant cell wall for bioenergy. Blackwell, London

    Google Scholar 

  2. Himmel ME (ed) et al (1997) Fuels and chemicals from biomass. American Chemical Society Symposium Series, American Chemical Society, Washington, DC

    Google Scholar 

  3. Bayer EA, Shimon LJ et al (1998) Cellulosomes-structure and ultrastructure. J Struct Biol 124:221–234

    Article  CAS  Google Scholar 

  4. Bayer EA, Belaich J-P et al (2004) The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Annu Rev Microbiol 58:521–554

    Article  CAS  Google Scholar 

  5. Ferrer M, Golyshina OV et al (2005) Novel hydrolase diversity retrieved from a metagenome library of bovine rumen microflora. Environ Microbiol 7:1966–2010

    Article  Google Scholar 

  6. Feng Y, Duan C et al (2007) Cloning and identification of novel cellulase genes from uncultured microorganisms in rabbit cecum and characterization of the expressed cellulases. Appl Microbiol Biotechnol 75:319–328

    Article  CAS  Google Scholar 

  7. Flint HJ, Bayer EA et al (2008) Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nat Rev Microbiol 6:121–131

    Article  CAS  Google Scholar 

  8. Singh B, Gautam SK et al (2008) Metagenomics in animal gastrointestinal ecosystem: potential biotechnological prospects. Anaerobe 14:138–144

    Article  CAS  Google Scholar 

  9. Warnecke F, Luginbuhl P et al (2007) Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450:560–565

    Article  CAS  Google Scholar 

  10. Ohkuma M (2008) Symbioses of flagellates and prokaryotes in the gut of lower termites. Trends Microbiol 16:345–352

    Article  CAS  Google Scholar 

  11. Scharf ME, Tartar A (2008) Termite digestomes as sources for novel lignocellulases. Biofuels, Bioprod Bioref 2:540–552

    Article  CAS  Google Scholar 

  12. Zachary A, Colwell RR (1979) Gut-associated microflora of Limnoria tripunctata in marine creosote-treated wood pilings. Nature 282:716–717

    Article  Google Scholar 

  13. Yu H, Zeng G et al (2007) Microbial community succession and lignocellulose degradation during agricultural waste composting. Biodegradation 18:793–802

    Article  CAS  Google Scholar 

  14. Schluter A, Bekel T et al (2008) The metagenome of a biogas-producing microbial community of a production-scale biogas plant fermenter analysed by the 454-pyrosequencing technology. J Biotechnol 136:77–90

    Article  Google Scholar 

  15. Allgaier M, Reddy A et al (2010) Targeted discovery of glycoside hydrolases from a switchgrass-adapted compost community. PLoS ONE 5:e8812

    Article  Google Scholar 

  16. Whitman WB, Coleman DC et al (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci U S A 95:6578–6583

    Article  CAS  Google Scholar 

  17. Amann RJ, Binder BL et al (1990) Combination of 16S rRNA targeted oligonucleotide probes with flow-cemetry for analysing mixed microbial populations. Appl Environ Microbiol 56:1910–1925

    Google Scholar 

  18. Tyson GW, Chapman J et al (2004) Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428:37–43

    Article  CAS  Google Scholar 

  19. Daniel R (2005) The metagenomics of soil. Nat Rev Microbiol 3:470–478

    Article  CAS  Google Scholar 

  20. Lorenz P, Eck J (2005) Metagenomics and industrial applications. Nature 3:510–516

    CAS  Google Scholar 

  21. Li LL, McCorkle S et al (2009) Bioprospecting metagenomes: glycosyl hydrolases for converting biomass. Biotechnol Biofuels 2:10

    Article  Google Scholar 

  22. Lesaulnier C, Papamichail D et al (2008) Elevated atmospheric CO2 affects soil microbial diversity associated with trembling aspen. Environ Microbiol 10:926–941

    Article  CAS  Google Scholar 

  23. Costello EK, Lauber CL et al (2009) Bacterial community variation in human body habitats across space and time. Science 326:1694–1697

    Article  CAS  Google Scholar 

  24. Foster JS, Green SJ et al (2009) Molecular and morphological characterization of cyanobacterial diversity in the stromatolites of Highborne Cay, Bahamas. ISME J 3:573–587

    Article  CAS  Google Scholar 

  25. Caporaso JG, Field D et al. Everything is everywhere: a 19th century hypothesis confirmed with 21st century science. ISME J (Submitted)

    Google Scholar 

  26. Gilbert JA, Field D et al (2009) The seasonal structure of microbial communities in the Western English Channel. Environ Microbiol 11:3132–3139

    Article  CAS  Google Scholar 

  27. Suen G, Scott JJ et al (2010) An insect herbivore microbiome with high plant biomass-degrading capacity. PLoS Genet 6(9)

    Google Scholar 

  28. Gianoulis TA, Raes J et al (2009) Quantifying environmental adaptation of metabolic pathways in metagenomics. Proc Natl Acad Sci U S A 106:1374–1379

    Article  CAS  Google Scholar 

  29. Gilbert JA, Field D et al (2010) The taxonomic and functional diversity of microbes at a temperate coastal site: a ‘multi-omic’ study of seasonal and diel temporal variation. PLoS One 5:e15545

    Article  CAS  Google Scholar 

  30. Noguchi H, Park J et al (2006) MetaGene: prokaryotic gene finding from environmental genome shotgun sequences. Nucleic Acids Res 34:5623–5630

    Article  CAS  Google Scholar 

  31. Henrissat B (1991) A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 280:309–316

    CAS  Google Scholar 

  32. Claudel-Renard C, Chevalet C, Faraut T, Kahn D (2003) Enzyme-specific profiles for genome annotation: PRIAM. Nucleic Acids Res 31:6633–6639

    Article  CAS  Google Scholar 

  33. Bateman A, Coin L, Durbin R, Finn RD, Hollich V, Griffiths-Jones S, Khanna A, Marshall M, Moxon S, Sonnhammer EL, Studholme DJ, Yeats C, Eddy SR (2004) The Pfam protein families database. Nucleic Acids Res 32(Database issue):D138–D141

    Article  CAS  Google Scholar 

  34. Rost B, Yachdav G, Liu J (2004) The PredictProtein Server. Nucleic Acids Res 32(Web Server issue):W321–W326

    Article  CAS  Google Scholar 

  35. Selengut JD, Haft DH, Davidsen T, Ganapathy A, Gwinn-Giglio M, Nelson WC, Richter AR, White O (2007) TIGRFAMs and Genome Properties: tools for the assignment of molecular function and biological process in prokaryotic genomes. Nucleic Acids Res 35(Database issue):D260–D264

    Article  CAS  Google Scholar 

  36. Cantarel BL, Coutinho PM et al (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res 37(suppl 1):D233–238

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge a subcontract from the BioEnergy Science Center, which is a US Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel van der Lelie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Gilbert, J., Li, LL., Taghavi, S., McCorkle, S.M., Tringe, S., van der Lelie, D. (2012). Bioprospecting Metagenomics for New Glycoside Hydrolases. In: Himmel, M. (eds) Biomass Conversion. Methods in Molecular Biology, vol 908. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-956-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-956-3_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-955-6

  • Online ISBN: 978-1-61779-956-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics