Skip to main content

Assays for Pten-Induced Novel Kinase 1 (PINK1) and Leucine-Rich Repeat Kinase 2 (LRRK2), Kinases Associated with Parkinson’s Disease

  • Protocol
  • First Online:
Protein Kinase Technologies

Part of the book series: Neuromethods ((NM,volume 68))

  • 1043 Accesses

Abstract

PTEN-induced novel kinase 1 (PINK1) and leucine-rich repeat kinase 2 (LRRK2) are two protein kinases associated with recessive and dominant forms of parkinsonism, respectively. Mutations in PINK1 cause loss of protein function whereas mutations in LRRK2 are less easily defined but, in some cases, may cause increased kinase activity. Furthermore, LRRK2 kinase activity is being explored as a therapeutic target in PD. Therefore, in both the cases of PINK1 and LRRK2, measuring kinase activity is important but is complicated by the problem that convincing physiological substrates of the two proteins have not yet been found. In this chapter, we will describe in detail the protocols we use in our lab to measure activity and related functions of these two kinases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hardy J (2010) Genetic analysis of pathways to Parkinson disease. Neuron 68:201–206

    Article  PubMed  CAS  Google Scholar 

  2. Zhou C, Huang Y, Shao Y et al (2008) The kinase domain of mitochondrial PINK1 faces the cytoplasm. Proc Natl Acad Sci USA 105:12022–12027

    Article  PubMed  CAS  Google Scholar 

  3. Valente EM, Abou-Sleiman PM, Caputo V et al (2004) Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science 304:1158–1160

    Article  PubMed  CAS  Google Scholar 

  4. Marin I, Van Egmond WN, Van Haastert PJ (2008) The roco protein family: a functional perspective. FASEB J 22:3103–3110

    Article  PubMed  CAS  Google Scholar 

  5. Paisan-Ruiz C, Jain S, Evans EW et al (2004) Cloning of the gene containing mutations that cause PARK8-linked Parkinson’s disease. Neuron 44:595–600

    Article  PubMed  CAS  Google Scholar 

  6. Zimprich A, Biskup S, Leitner P et al (2004) Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 44:601–607

    Article  PubMed  CAS  Google Scholar 

  7. Beilina A, Van Der Brug M, Ahmad R et al (2005) Mutations in PTEN-induced putative kinase 1 associated with recessive parkinsonism have differential effects on protein stability. Proc Natl Acad Sci USA 102:5703–5708

    Article  PubMed  CAS  Google Scholar 

  8. Kawajiri S, Saiki S, Sato S et al (2011) Genetic mutations and functions of PINK1. Trends Pharmacol Sci

    Google Scholar 

  9. Clark IE, Dodson MW, Jiang C et al (2006) Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 441:1162–1166

    Article  PubMed  CAS  Google Scholar 

  10. Dagda RK, Cherra SJ 3rd, Kulich SM et al (2009) Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission. J Biol Chem 284:13843–13855

    Article  PubMed  CAS  Google Scholar 

  11. Exner N, Treske B, Paquet D et al (2007) Loss-of-function of human PINK1 results in mitochondrial pathology and can be rescued by parkin. J Neurosci 27:12413–12418

    Article  PubMed  CAS  Google Scholar 

  12. Gautier CA, Kitada T, Shen J (2008) Loss of PINK1 causes mitochondrial functional defects and increased sensitivity to oxidative stress. Proc Natl Acad Sci USA 105:11364–11369

    Article  PubMed  CAS  Google Scholar 

  13. Gegg ME, Cooper JM, Schapira AH et al (2009) Silencing of PINK1 expression affects mitochondrial DNA and oxidative phosphorylation in dopaminergic cells. PLoS One 4:e4756

    Article  PubMed  Google Scholar 

  14. Gispert S, Ricciardi F, Kurz A et al (2009) Parkinson phenotype in aged PINK1-deficient mice is accompanied by progressive mitochondrial dysfunction in absence of neurodegeneration. PLoS One 4:e5777

    Article  PubMed  Google Scholar 

  15. Grunewald A, Gegg ME, Taanman JW et al (2009) Differential effects of PINK1 nonsense and missense mutations on mitochondrial function and morphology. Exp Neurol 219:266–273

    Article  PubMed  CAS  Google Scholar 

  16. Hoepken HH, Gispert S, Morales B et al (2007) Mitochondrial dysfunction, peroxidation damage and changes in glutathione metabolism in PARK6. Neurobiol Dis 25:401–411

    Article  PubMed  CAS  Google Scholar 

  17. Morais VA, Verstreken P, Roethig A et al (2009) Parkinson’s Disease mutations in PINK1 result in decreased complex I activity and deficient synaptic function. EMBO Mol Med 1:99–111

    Article  PubMed  CAS  Google Scholar 

  18. Park J, Lee SB, Lee S et al (2006) Mitochondrial dysfunction in drosophila PINK1 mutants is complemented by parkin. Nature 441:1157–1161

    Article  PubMed  CAS  Google Scholar 

  19. Sandebring A, Thomas KJ, Beilina A et al (2009) Mitochondrial alterations in PINK1 deficient cells are influenced by calcineurin-dependent dephosphorylation of dynamin-related protein 1. PLoS One 4:e5701

    Article  PubMed  Google Scholar 

  20. Cui T, Fan C, Gu L et al (2011) Silencing of PINK1 induces mitophagy via mitochondrial permeability transition in dopaminergic MN9D cells. Brain Res 1394:1–13

    Article  PubMed  CAS  Google Scholar 

  21. Gegg ME, Cooper JM, Chau KY et al (2010) Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy. Hum Mol Genet 19:4861–4870

    Article  PubMed  CAS  Google Scholar 

  22. Geisler S, Holmstrom KM, Skujat D et al (2010) PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol 12:119–131

    Article  PubMed  CAS  Google Scholar 

  23. Geisler S, Holmstrom KM, Treis A et al (2010) The PINK1/Parkin-mediated mitophagy is compromised by PD-associated mutations. Autophagy 6:871–878

    Article  PubMed  CAS  Google Scholar 

  24. Heeman B, Van Den Haute C, Aelvoet SA et al (2011) Depletion of PINK1 affects mitochondrial metabolism, calcium homeostasis and energy maintenance. J Cell Sci 124:1115–1125

    Article  PubMed  CAS  Google Scholar 

  25. Jin SM, Lazarou M, Wang C et al (2010) Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J Cell Biol 191:933–942

    Article  PubMed  CAS  Google Scholar 

  26. Kawajiri S, Saiki S, Sato S et al (2010) PINK1 is recruited to mitochondria with parkin and associates with LC3 in mitophagy. FEBS Lett 584:1073–1079

    Article  PubMed  CAS  Google Scholar 

  27. Matsuda N, Sato S, Shiba K et al (2010) PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J Cell Biol 189:211–221

    Article  PubMed  CAS  Google Scholar 

  28. Michiorri S, Gelmetti V, Giarda E et al (2010) The Parkinson-associated protein PINK1 interacts with Beclin1 and promotes autophagy. Cell Death Differ 17:962–974

    Article  PubMed  CAS  Google Scholar 

  29. Narendra DP, Jin SM, Tanaka A et al (2010) PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol 8:e1000298

    Article  PubMed  Google Scholar 

  30. Rakovic A, Grunewald A, Kottwitz J et al (2011) Mutations in PINK1 and Parkin impair ubiquitination of mitofusins in human fibroblasts. PLoS One 6:e16746

    Article  PubMed  CAS  Google Scholar 

  31. Rakovic A, Grunewald A, Seibler P et al (2010) Effect of endogenous mutant and wild-type PINK1 on Parkin in fibroblasts from Parkinson disease patients. Hum Mol Genet 19:3124–3137

    Article  PubMed  CAS  Google Scholar 

  32. Vives-Bauza C, Zhou C, Huang Y et al (2010) PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc Natl Acad Sci USA 107:378–383

    Article  PubMed  CAS  Google Scholar 

  33. Greggio E, Cookson MR (2009) Leucine-rich repeat kinase 2 mutations and Parkinson’s disease: three questions. ASN Neuro 1

    Google Scholar 

  34. Lee BD, Shin JH, Vankampen J et al (2010) Inhibitors of leucine-rich repeat kinase-2 protect against models of Parkinson’s disease. Nat Med 16:998–1000

    Article  PubMed  CAS  Google Scholar 

  35. Greggio E, Jain S, Kingsbury A et al (2006) Kinase activity is required for the toxic effects of mutant LRRK2/dardarin. Neurobiol Dis 23:329–341

    Article  PubMed  CAS  Google Scholar 

  36. Smith WW, Pei Z, Jiang H et al (2006) Kinase activity of mutant LRRK2 mediates neuronal toxicity. Nat Neurosci 9:1231–1233

    Article  PubMed  CAS  Google Scholar 

  37. Deng X, Dzamko N, Prescott A et al (2011) Characterization of a selective inhibitor of the Parkinson’s disease kinase LRRK2. Nat Chem Biol 7:203–205

    Article  PubMed  CAS  Google Scholar 

  38. Liu M, Poulose S, Schuman E et al (2010) Development of a mechanism-based high-throughput screen assay for leucine-rich repeat kinase 2–discovery of LRRK2 inhibitors. Anal Biochem 404:186–192

    Article  PubMed  CAS  Google Scholar 

  39. Jaleel M, Nichols RJ, Deak M et al (2007) LRRK2 Phosphorylates moesin at threonine-558: characterization of how Parkinson’s disease mutants affect kinase activity. Biochem J 405:307–317

    Article  PubMed  CAS  Google Scholar 

  40. Nichols RJ, Dzamko N, Hutti JE et al (2009) Substrate specificity and inhibitors of LRRK2, a protein kinase mutated in Parkinson’s disease. Biochem J 424:47–60

    Article  PubMed  CAS  Google Scholar 

  41. Anand VS, Reichling LJ, Lipinski K et al (2009) Investigation of leucine-rich repeat kinase 2: enzymological properties and novel assays. FEBS J 276:466–478

    Article  PubMed  CAS  Google Scholar 

  42. Covy JP, Giasson BI (2009) Identification of compounds that inhibit the kinase activity of leucine-rich repeat kinase 2. Biochem Biophys Res Commun 378:473–477

    Article  PubMed  CAS  Google Scholar 

  43. Liu M, Dobson B, Glicksman MA et al (2010) Kinetic mechanistic studies of wild-type leucine-rich repeat kinase 2: characterization of the kinase and GTPase activities. Biochemistry 49:2008–2017

    Article  PubMed  CAS  Google Scholar 

  44. Lovitt B, Vanderporten EC, Sheng Z et al (2010) Differential effects of divalent manganese and magnesium on the kinase activity of leucine-rich repeat kinase 2 (LRRK2). Biochemistry 49:3092–3100

    Article  PubMed  CAS  Google Scholar 

  45. Pedro L, Padros J, Beaudet L et al (2010) Development of a high-throughput AlphaScreen assay measuring full-length LRRK2(G2019S) kinase activity using moesin protein substrate. Anal Biochem 404:45–51

    Article  PubMed  CAS  Google Scholar 

  46. Gloeckner CJ, Boldt K, Von Zweydorf F et al (2010) Phosphopeptide analysis reveals two discrete clusters of phosphorylation in the N-terminus and the Roc domain of the Parkinson-disease associated protein kinase LRRK2. J Proteome Res 9:1738–1745

    Article  PubMed  CAS  Google Scholar 

  47. Greggio E, Taymans JM, Zhen EY et al (2009) The Parkinson’s disease kinase LRRK2 ­autophosphorylates its GTPase domain at ­multiple sites. Biochem Biophys Res Commun 389:449–454

    Article  PubMed  CAS  Google Scholar 

  48. Kamikawaji S, Ito G, Iwatsubo T (2009) Identification of the autophosphorylation sites of LRRK2. Biochemistry 48:10963–10975

    Article  PubMed  CAS  Google Scholar 

  49. Pungaliya PP, Bai Y, Lipinski K et al (2010) Identification and characterization of a leucine-rich repeat kinase 2 (LRRK2) consensus phosphorylation motif. PLoS One 5:e13672

    Article  PubMed  Google Scholar 

  50. Mills RD, Sim CH, Mok SS et al (2008) Biochemical aspects of the neuroprotective mechanism of PTEN-induced kinase-1 (PINK1). J Neurochem 105:18–33

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Intramural Research Program of the NIH, National Institute on Aging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark R. Cookson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Beilina, A., Cookson, M.R. (2012). Assays for Pten-Induced Novel Kinase 1 (PINK1) and Leucine-Rich Repeat Kinase 2 (LRRK2), Kinases Associated with Parkinson’s Disease. In: Mukai, H. (eds) Protein Kinase Technologies. Neuromethods, vol 68. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-824-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-824-5_12

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-823-8

  • Online ISBN: 978-1-61779-824-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics