Skip to main content

Lipases: An Overview

  • Protocol
  • First Online:
Lipases and Phospholipases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 861))

Abstract

Lipases are ubiquitous enzymes, widespread in nature. They were first isolated from bacteria in the early nineteenth century and the associated research continuously increased due to the particular characteristics of these enzymes. This chapter reviews the main sources, structural properties, and industrial applications of these highly studied enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tang SJ, Shaw JF, Sun KH et al (2001) Recombinant expression and characterization of the Candida rugosa lip4 lipase in Pichia pastoris: comparison of glycosylation, activity, and stability. Arch Biochem Biophys 387:93–98

    Article  PubMed  CAS  Google Scholar 

  2. Uppenberg J, Hansen MT, Patkar S et al (1994) Sequence, crystal-structure determination and refinement of 2 crystal forms of lipase-B from Candida antarctica. Structure 2:293–308

    Article  PubMed  CAS  Google Scholar 

  3. Hofmann K, Bucher P, Falquet L et al (1999) The PROSITE database, its status in 1999. Nucleic Acids Res 27:215–219

    Article  PubMed  CAS  Google Scholar 

  4. Chahinian H, Nini L, Boitard E et al (2002) Distinction between esterases and lipases: a kinetic study with vinyl esters and TAG. Lipids 37:653–662

    Article  PubMed  CAS  Google Scholar 

  5. Verger R (1997) “Interfacial activation” of lipases: facts and artifacts. Trends Biotechnol 15:32–38

    Article  CAS  Google Scholar 

  6. Fojan P, Jonson PH, Petersen MTN et al (2000) What distinguishes an esterase from a lipase: a novel structural approach. Biochimie 82:1033–1041

    Article  PubMed  CAS  Google Scholar 

  7. Reis P, Holmberg K, Watzke H et al (2009) Lipases at interfaces: a review. Adv Colloid Interface Sci 147–48:237–250

    Article  CAS  Google Scholar 

  8. Svendsen A (2000) Lipase protein engineering. Biochim Biophys Acta Protein Struct Mol Enzymol 1543:223–238

    Article  CAS  Google Scholar 

  9. Eijkmann C (1901) Über Enzyme bei Bakterien und Schimmelpilzen. Zentralbl Bakt Parasitenk Infektionsk 29:841–848

    Google Scholar 

  10. Vakhlu J, Kour A (2006) Yeast lipases: enzyme purification, biochemical properties and gene cloning. Electron J Biotechnol 9:69–85

    Article  CAS  Google Scholar 

  11. Choo DW, Kurihara T, Suzuki T et al (1998) A cold-adapted lipase of an Alaskan psychrotroph, Pseudomonas sp. strain B11-1: Gene cloning and enzyme purification and characterization. Appl Environ Microbiol 64:486–491

    PubMed  CAS  Google Scholar 

  12. Rahman R, Leow TC, Salleh AB et al (2007) Geobacillus zalihae sp nov., a thermophilic lipolytic bacterium isolated from palm oil mill effluent in Malaysia. BMC Microbiol. doi:10.1186/1471-2180-7-77

  13. Schicher M, Morak M, Birner-Gruenberger R et al (2010) Functional proteomic analysis of lipases and esterases in cultured human adipocytes. J Prot Res 9:6334–6344

    Article  CAS  Google Scholar 

  14. Nabarlatz D, Vondrysova J, Jenicek P et al (2010) Hydrolytic enzymes in activated sludge: extraction of protease and lipase by stirring and ultrasonication. Ultrason Sonochem 17:923–931

    Article  PubMed  CAS  Google Scholar 

  15. Bell PJL, Sunna A, Gibbs MD et al (2002) Prospecting for novel lipase genes using PCR. Microbiology-(UK) 148:2283–2291

    CAS  Google Scholar 

  16. Henne A, Schmitz RA, Bomeke M et al (2000) Screening of environmental DNA libraries for the presence of genes conferring lipolytic activity on Escherichia coli. Appl Environ Microbiol 66:3113–3116

    Article  PubMed  CAS  Google Scholar 

  17. Zuo K, Zhang L, Yao H et al (2010) Isolation and functional expression of a novel lipase gene isolated directly from oil-contaminated soil. Acta Biochim Pol 57:305–311

    PubMed  CAS  Google Scholar 

  18. Hasan F, Shah AA, Hameed A (2009) Methods for detection and characterization of lipases: a comprehensive review. Biotechnol Adv 27:782–798

    Article  PubMed  CAS  Google Scholar 

  19. Sharma R, Chisti Y, Banerjee UC (2001) Production, purification, characterization, and applications of lipases. Biotechnol Adv 19:627–662

    Article  PubMed  CAS  Google Scholar 

  20. Pahoja WM, Sethar MA (2002) A review of enzymatic properties of lipase in plants, animals and microorganisms. J Appl Sci 2:474–484

    Article  Google Scholar 

  21. Adlercreutz P, Gitlesen T, Ncube I et al (1997) Vernonia lipase: a plant lipase with strong fatty acid selectivity. Methods in Enzymology, vol 284. Academic Press, p 220

    Google Scholar 

  22. Tsuchiya T, Ohta H, Okawa K et al (1999) Cloning of chlorophyllase, the key enzyme in chlorophyll degradation: finding of a lipase motif and the induction by methyl jasmonate. Proc Natl Acad Sci USA 96:15362–15367

    Article  PubMed  CAS  Google Scholar 

  23. Stintzi A, Heitz T, Prasad V et al (1993) Plant pathogenesis-related proteins and their role in defense against pathogens. Biochimie 75:687–706

    Article  PubMed  CAS  Google Scholar 

  24. Olukoshi ER, Packter NM (1994) Importance of stored triacylglycerols in Streptomyces—possible carbon source far antibiotics. Microbiology-UK 140:931–943

    Article  CAS  Google Scholar 

  25. Wagner A, Daum G (2005) Formation and mobilization of neutral lipids in the yeast Saccharomyces cerevisiae. Biochem Soc Trans 33:1174–1177

    Article  PubMed  CAS  Google Scholar 

  26. Brady L, Brzozowski AM, Derewenda ZS et al (1990) A serine protease triad forms the catalytic centre of a triacylglycerol lipase. Nature 343:767–770

    Article  PubMed  CAS  Google Scholar 

  27. Winkler FK, Darcy A, Hunziker W (1990) Structure of human pancreatic lipase. Nature 343:771–774

    Article  PubMed  CAS  Google Scholar 

  28. Derewenda U, Swenson L, Wei YY et al (1994) Conformational lability of lipases observed in the absence of an oil–water interface—crystallographic studies of enzymes from the fungi Humicola lanuginosa and Rhizopus delemar. J Lipid Res 35:524–534

    PubMed  CAS  Google Scholar 

  29. Kohno M, Funatsu J, Mikami B et al (1996) The crystal structure of lipase II from Rhizopus niveus at 2.2 angstrom resolution. J Biochem (Tokyo) 120:505–510

    CAS  Google Scholar 

  30. Ericsson DJ, Kasrayan A, Johanssonl P et al (2008) X-ray structure of Candida antarctica lipase a shows a novel lid structure and a likely mode of interfacial activation. J Mol Biol 376:109–119

    Article  PubMed  CAS  Google Scholar 

  31. Grochulski P, Li YG, Schrag JD et al (1993) Insights into interfacial activation from an open structure of Candida rugosa lipase. J Biol Chem 268:12843–12847

    PubMed  CAS  Google Scholar 

  32. Schrag JD, Cygler M (1993) 1.8-angstrom refined structure of the lipase from Geotrichum candidum. J Mol Biol 230:575–591

    Article  PubMed  CAS  Google Scholar 

  33. Bian CB, Yuan C, Chen LQ et al (2010) Crystal structure of a triacylglycerol lipase from Penicillium expansum at 1.3 angstrom determined by sulfur SAD. Proteins 78:1601–1605

    PubMed  CAS  Google Scholar 

  34. Derewenda U, Swenson L, Green R et al (1994) An unusual buried polar cluster in a family of fungal lipases. Nat Struct Biol 1:36–47

    Article  PubMed  CAS  Google Scholar 

  35. Bordes F, Barbe S, Escalier P et al (2010) Exploring the conformational states and rearrangements of Yarrowia lipolytica lipase. Biophys J 99:2225–2234

    Article  PubMed  CAS  Google Scholar 

  36. van Pouderoyen G, Eggert T, Jaeger KE et al (2001) The crystal structure of Bacillus subtilis lipase: a minimal alpha/beta hydrolase fold enzyme. J Mol Biol 309:215–226

    Article  PubMed  CAS  Google Scholar 

  37. Angkawidjaja C, You DJ, Matsumura H et al (2007) Crystal structure of a family I.3 lipase from Pseudomonas sp MIS38 in a closed conformation. FEBS Lett 581:5060–5064

    Article  PubMed  CAS  Google Scholar 

  38. Nardini M, Lang DA, Liebeton K et al (2000) Crystal structure of Pseudomonas aeruginosa lipase in the open conformation—the prototype for family I.1 of bacterial lipases. J Biol Chem 275:31219–31225

    Article  PubMed  CAS  Google Scholar 

  39. Kim KK, Song HK, Shin DH et al (1997) The crystal structure of a triacylglycerol lipase from Pseudomonas cepacia reveals a highly open conformation in the absence of a bound inhibitor. Structure 5:173–185

    Article  PubMed  CAS  Google Scholar 

  40. Schrag JD, Li Y, Cygler M et al (1997) The open conformation of a Pseudomonas lipase. Structure 5:187

    Article  PubMed  CAS  Google Scholar 

  41. Noble MEM, Cleasby A, Johnson LN et al (1993) The crystal-structure of triacylglycerol lipase from Pseudomonas glumae reveals a partially redundant catalytic aspartate. FEBS Lett 331:123–128

    Article  PubMed  CAS  Google Scholar 

  42. Lang D, Hofmann B, Haalck L et al (1996) Crystal structure of a bacterial lipase from Chromobacterium viscosum ATCC 6918 refined at 1.6 angstrom resolution. J Mol Biol 259:704–717

    Article  PubMed  CAS  Google Scholar 

  43. Carrasco-Lopez C, Godoy C, de las Rivas B et al (2009) Activation of bacterial thermoalkalophilic lipases is spurred by dramatic structural rearrangements. J Biol Chem 284:4365–4372

    Article  PubMed  CAS  Google Scholar 

  44. Jeong ST, Kim HK, Kim SJ et al (2002) Novel zinc-binding center and a temperature switch in the Bacillus stearothermophilus L1 lipase. J Biol Chem 277:17041–17047

    Article  PubMed  CAS  Google Scholar 

  45. Tyndall JDA, Sinchaikul S, Fothergill-Gilmore LA et al (2002) Crystal structure of a thermostable lipase from Bacillus stearothermophilus P1. J Mol Biol 323:859–869

    Article  PubMed  CAS  Google Scholar 

  46. Matsumura H, Yamamoto T, Leow TC et al (2008) Novel cation-pi interaction revealed by crystal structure of thermoalkalophilic lipase. Proteins 70:592–598

    Article  PubMed  CAS  Google Scholar 

  47. Jung SK, Jeong DG, Lee MS et al (2008) Structural basis for the cold adaptation of psychrophilic M37 lipase from Photobacterium lipolyticum. Proteins 71:476–484

    Article  PubMed  CAS  Google Scholar 

  48. Meier R, Drepper T, Svensson V et al (2007) A calcium-gated lid and a large beta-roll sandwich are revealed by the crystal structure of extracellular lipase from Serratia marcescens. J Biol Chem 282:31477–31483

    Article  PubMed  CAS  Google Scholar 

  49. Tiesinga JJW, van Pouderoyen G, Nardini M et al (2007) Structural basis of phospholipase activity of Staphylococcus hyicus lipase. J Mol Biol 371:447–456

    Article  PubMed  CAS  Google Scholar 

  50. Wei YY, Swenson L, Castro C et al (1998) Structure of a microbial homologue of mammalian platelet-activating factor acetylhydrolases: Streptomyces exfoliatus lipase at 1.9 angstrom resolution. Structure 6:511–519

    Article  PubMed  CAS  Google Scholar 

  51. Chen CKM, Lee GC, Ko TP et al (2009) Structure of the Alkalohyperthermophilic Archaeoglobus fulgidus Lipase Contains a Unique C-Terminal Domain Essential for Long-Chain Substrate Binding. J Mol Biol 390:672–685

    Article  PubMed  CAS  Google Scholar 

  52. Wang XQ, Wang CS, Tang J et al (1997) The crystal structure of bovine bile salt activated lipase: insights into the bile salt activation mechanism. Structure 5:1209–1218

    Article  PubMed  CAS  Google Scholar 

  53. Roussel A, de Caro J, Bezzine S et al (1998) Reactivation of the totally inactive pancreatic lipase RP1 by structure-predicted point mutations. Proteins 32:523–531

    Article  PubMed  CAS  Google Scholar 

  54. Bourne Y, Martinez C, Kerfelec B et al (1994) Horse pancreatic lipase—the crystal-structure refined at 2-center-dot-3 angstrom resolution. J Mol Biol 238:709–732

    Article  PubMed  CAS  Google Scholar 

  55. Roussel A, Yang YQ, Ferrato F et al (1998) Structure and activity of rat pancreatic lipase-related protein 2. J Biol Chem 273:32121–32128

    Article  PubMed  CAS  Google Scholar 

  56. WithersMartinez C, Carriere F, Verger R et al (1996) A pancreatic lipase with a phospholipase A1 activity: crystal structure of a chimeric pancreatic lipase-related protein 2 from guinea pig. Structure 4:1363–1374

    Article  CAS  Google Scholar 

  57. Pleiss J, Fischer M, Peiker M et al (2000) Lipase engineering database—understanding and exploiting sequence-structure-function relationships. J Mol Catal B: Enzym 10:491–508

    Article  CAS  Google Scholar 

  58. Lang DA, Mannesse MLM, De Haas GH et al (1998) Structural basis of the chiral selectivity of Pseudomonas cepacia lipase. Eur J Biochem 254:333–340

    Article  PubMed  CAS  Google Scholar 

  59. Luic M, Tomic S, Lescic I et al (2001) Complex of Burkholderia cepacia lipase with transition state analogue of 1-phenoxy-2-acetoxybutane—biocatalytic, structural and modelling study. Eur J Biochem 268:3964–3973

    Article  PubMed  CAS  Google Scholar 

  60. Mezzetti A, Schrag JD, Cheong CS et al (2005) Mirror-image packing in enantiomer discrimination: molecular basis for the enantioselectivity of B. cepacia lipase toward 2-methyl-3-phenyl-1-propanol. Chem Biol 12:427–437

    Article  PubMed  CAS  Google Scholar 

  61. Uppenberg J, Ohrner N, Norin M et al (1995) Crystallographic and molecular-modeling studies of lipase B from Candida antarctica reveal a stereospecificity pocket for secondary alcohols. Biochemistry 34:16838–16851

    Article  PubMed  CAS  Google Scholar 

  62. Qian Z, Horton JR, Cheng XD et al (2009) Structural redesign of lipase B from Candida antarctica by circular permutation and incremental truncation. J Mol Biol 393:191–201

    Article  PubMed  CAS  Google Scholar 

  63. Grochulski P, Li Y, Schrag JD et al (1994) Two conformational states of Candida rugosa lipase. Protein Sci 3:82–91

    Article  PubMed  CAS  Google Scholar 

  64. Grochulski P, Bouthillier F, Kazlauskas RJ et al (1994) Analogs of reaction intermediates identify a unique substrate-binding site in Candida rugosa lipase. Biochemistry 33:3494–3500

    Article  PubMed  CAS  Google Scholar 

  65. Cygler M, Grochulski P, Kazlauskas RJ et al (1994) A structural basis for the chiral preferences of lipases. J Am Chem Soc 116:3180–3186

    Article  CAS  Google Scholar 

  66. Brzozowski AM, Derewenda ZS, Dodson EJ et al (1992) Structure and molecular-model refinement of Rhizomucor miehei triacylglyceride lipase—a case-study of the use of simulated annealing in partial model refinement. Acta Crystallogr Sect B-Struct Commun 48:307–319

    Article  Google Scholar 

  67. Derewenda U, Brzozowski AM, Lawson DM et al (1992) Catalysis at the interface—the anatomy of a conformational change in a triglyceride lipase. Biochemistry 31:1532–1541

    Article  PubMed  CAS  Google Scholar 

  68. Brzozowski AM, Derewenda U, Derewenda ZS et al (1991) A model for interfacial activation in lipases from the structure of a fungal lipase-inhibitor complex. Nature 351:491–494

    Article  PubMed  CAS  Google Scholar 

  69. Brzozowski AM, Savage H, Verma CS et al (2000) Structural origins of the interfacial activation in Thermomyces (Humicola) lanuginosa lipase. Biochemistry 39:15071–15082

    Article  PubMed  CAS  Google Scholar 

  70. Yapoudjian S, Ivanova MG, Brzozowski AM et al (2002) Binding of Thermomyces (Humicola) lanuginosa lipase to the mixed micelles of cis-parinaric acid/NaTDC—fluorescence resonance energy transfer and crystallographic study. Eur J Biochem 269:1613–1621

    Article  PubMed  CAS  Google Scholar 

  71. Vantilbeurgh H, Sarda L, Verger R et al (1992) Structure of the pancreatic lipase procolipase complex. Nature 359:159–162

    Article  CAS  Google Scholar 

  72. Eydoux C, Spinelli S, Davis TL et al (2008) Structure of human pancreatic lipase-related protein 2 with the lid in an open conformation. Biochemistry 47:9553–9564

    Article  PubMed  CAS  Google Scholar 

  73. Jaeger KE, Dijkstra BW, Reetz MT (1999) Bacterial biocatalysts: molecular biology, three-dimensional structures, and biotechnological applications of lipases. Annu Rev Microbiol 53:315–351

    Article  PubMed  CAS  Google Scholar 

  74. Pleiss J, Fischer M, Schmid RD (1998) Anatomy of lipase binding sites: the scissile fatty acid binding site. Chem Phys Lipids 93:67–80

    Article  PubMed  CAS  Google Scholar 

  75. Ollis DL, Cheah E, Cygler M et al (1992) The alpha/beta-hydrolase fold. Protein Eng 5:197–211

    Article  PubMed  CAS  Google Scholar 

  76. Derewenda ZS, Derewenda U, Dodson GG (1992) The crystal and molecular-structure of the Rhizomucor miehei triacylglyceride lipase at 1.9-angstrom resolution. J Mol Biol 227:818–839

    Article  PubMed  CAS  Google Scholar 

  77. Akoh CC, Lee GC, Liaw YC et al (2004) GDSL family of serine esterases/lipases. Prog Lipid Res 43:534–552

    Article  PubMed  CAS  Google Scholar 

  78. Fischer M, Thai QK, Grieb M et al (2006) DWARF—a data warehouse system for analyzing protein families. BMC Bioinformatics. doi:10.1186/1471-2105-7-495

  79. Pleiss J (2009) The lipase engineering database. Institute of Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany. http://www.led.uni-stuttgart.de. Accessed 5 April 2011

  80. Widmann M, Juhl PB, Pleiss J (2010) Structural classification by the lipase engineering database: a case study of Candida antarctica lipase A. BMC Genomics 11:123

    Article  PubMed  CAS  Google Scholar 

  81. Derewenda ZS, Derewenda U (1991) Relationships among serine hydrolases—evidence for a common structural motif in triacylglyceride lipases and esterases. Biochem Cell Biol 69:842–851

    Article  PubMed  CAS  Google Scholar 

  82. Grochulski P, Li Y, Schrag JD et al (1993) Insights into interfacial activation from an open structure of Candida rugosa lipase. J Biol Chem 268:12843–12847

    PubMed  CAS  Google Scholar 

  83. Grochulski P, Li Y, Schrag JD et al (1994) Two conformational states of Candida rugosa lipase. Protein Sci 3:82–91

    Article  PubMed  CAS  Google Scholar 

  84. Fickers P, Destain J, Thonart P (2008) Les lipases sont des hydrolases atypiques: principales caractéristiques et applications. BASE 12:119–130

    CAS  Google Scholar 

  85. Moore SA, Kingston RL, Loomes KM et al (2001) The structure of truncated recombinant human bile salt-stimulated lipase reveals bile salt-independent conformational flexibility at the active-site loop and provides insights into heparin binding. J Mol Biol 312:511–523

    Article  PubMed  CAS  Google Scholar 

  86. Sommadelpero C, Valette A, Lepetitthevenin J et al (1995) Purification and properties of a monoacylglycerol lipase in human erythrocytes. Biochem J 312:519–525

    CAS  Google Scholar 

  87. Lopez N, Pernas MA, Pastrana LM et al (2004) Reactivity of pure Candida rugosa lipase isoenzymes (Lip1, Lip2, and Lip3) in aqueous and organic media. Influence of the isoenzymatic profile on the lipase performance in organic media. Biotechnol Prog 20:65–73

    Article  PubMed  CAS  Google Scholar 

  88. Horchani H, Ben Salem N, Chaari A et al (2010) Staphylococcal lipases stereoselectively hydrolyse the sn-2 position of monomolecular films of diglyceride analogs. Application to sn-2 hydrolysis of triolein. J Colloid Interface Sci 347:301–308

    Article  PubMed  CAS  Google Scholar 

  89. Ota Y, Sawamoto T, Hasuo M (2000) Tributyrin specifically induces a lipase with a preference for the sn-2 position of triglyceride in Geotrichum sp FO401B. Biosci Biotechnol Biochem 64:2497–2499

    Article  PubMed  CAS  Google Scholar 

  90. Vadehra DV, Harmon LG (1967) Characterization of purified staphylococcal lipase. Appl Microbiol 15:480–483

    PubMed  CAS  Google Scholar 

  91. Vanoort MG, Deveer A, Dijkman R et al (1989) Purification and substrate-specificity of Staphylococcus hyicus lipase. Biochemistry 28:9278–9285

    Article  CAS  Google Scholar 

  92. Hassing GS (1971) Partial purification and some properties of a lipase from Coryne-bacterium acnes. Biochim Biophys Acta 242:381–394

    PubMed  CAS  Google Scholar 

  93. Sugiura M, Isobe M (1975) Studies on enzymes.94. Studies on lipase of chromobacterium viscosum.4. substrate-specificity of a low-molecular weight lipase. Chem Pharm Bull(Tokyo) 23:1226–1230

    Article  CAS  Google Scholar 

  94. Soykova Pachnerova E (1963) Effect of thalidomide on the pathogenesis of abnormalities in newborn infants. Lek Veda Zahr 34:162–166

    PubMed  CAS  Google Scholar 

  95. Kazlauskas RJ, Weissfloch ANE, Rappaport AT et al (1991) A rule to predict which enantiomer of a secondary alcohol reacts faster in reactions catalyzed by Cholesterol Esterase, lipase from Pseudomonas cepacia, and lipase from Candidarugosa. J Org Chem 56:2656–2665

    Article  CAS  Google Scholar 

  96. Bordes F, Cambon E, Dossat-Létisse V et al (2009) Improvement of Yarrowia lipolytica lipase enantioselectivity by using mutagenesis targeted to the substrate binding site. Chembiochem 10:1705

    Article  PubMed  CAS  Google Scholar 

  97. Pleiss J, Scheib H, Schmid RD (2000) The His gap motif in microbial lipases: a determinant of stereoselectivity toward triacylglycerols and analogs. Biochimie 82:1043–1052

    Article  PubMed  CAS  Google Scholar 

  98. Guieysse D, Cortes J, Puech-Guenot S et al (2008) A structure-controlled investigation of lipase enantioselectivity by a path-planning approach. Chem Bio Chem 9:1308–1317

    PubMed  CAS  Google Scholar 

  99. CBDM.T MaBI (2008) The enzyme market survey. http://www.cbdmt.com/index.php?id=4. Accessed Nov 2010

  100. Freedonia (2009) World Enzymes Market. Report Linker. http://www.reportlinker.com/p0148002/World-Enzymes-Market.html. Accessed Nov 2010

  101. Freedonia (2010) Enzymes. http://www.freedoniagroup.com/brochure/26xx/2670smwe.pdf. Accessed Nov 2010

  102. Hasan F, Shah AA, Hameed A (2006) Industrial applications of microbial lipases. Enzyme Microb Technol 39:235–251

    Article  CAS  Google Scholar 

  103. Aloulou A, Rodriguez JA, Puccinelli D et al (2007) Purification and biochemical characterization of the LIP2 lipase from Yarrowia lipolytica. Biochim Biophys Acta 1771:228–237

    PubMed  CAS  Google Scholar 

  104. Houde A, Kademi A, Leblanc D (2004) Lipases and their industrial applications. Appl Biochem Biotechnol 118:155

    Article  PubMed  CAS  Google Scholar 

  105. Pignede G, Wang HJ, Fudalej F et al (2000) Characterization of an extracellular lipase encoded by LIP2 in Yarrowia lipolytica. J Bacteriol 182:2802–2810

    Article  PubMed  CAS  Google Scholar 

  106. Pandey A, Benjamin S, Soccol CR et al (1999) The realm of microbial lipases in biotechnology. Biotechnol Appl Biochem 29:119–131

    PubMed  CAS  Google Scholar 

  107. Jaeger KE, Eggert T (2002) Lipases for biotechnology. Curr Opin Biotechnol 13:390–397

    Article  PubMed  CAS  Google Scholar 

  108. Haering D, Winter G, Schneller A et al (2010) Method for producing (meth) acrylic acid esters of alcoholic flavouring agents using lipases. WO/2009/068098. Ludwigshafen BS

    Google Scholar 

  109. Irimescu R, Furihata K, Hata K et al (2005) Process for the production of glycerides with lipases. US 2004033571, United State Patent and Trademark Office

    Google Scholar 

  110. Regalo Da Fonseca MM, Ferreira Osorio NM, Ferreira Dias S (2002) Continuous process of transesterification of fats catalyzed by lipases obtains fats useful in the food industry with rheological characteristics different to those of original mixture. PT 102638, Agência de Inovação

    Google Scholar 

  111. Martinez Rodriguez M, Garcia Muntion E, Ferrari Menendez F et al (2002) Process for selectively obtaining products of reaction between natural fatty acids with di glycerine employs lipases immobilized as catalyst. ES 2167205, Oficina Española de Patentes y Marcas

    Google Scholar 

  112. Aracil Mira J, Garcia Gonzalez D, Martinez Rodriguez M (2000) Production of a glyceryl based agent via catalytic lipases consists of selective esterification of acid and glycerine to give cis octadecenoate. ES2149689, Oficina Española de Patentes y Marcas

    Google Scholar 

  113. Grote MR, Geurtsen JP, Van Putte KP (2000) Processes for preparing and using immobilized lipases. US 6162623, United State Patent and Trademark Office

    Google Scholar 

  114. Kosikowski FV, Jolly RC (1976) Flavor development by microbial lipases in pasteurized milk blue cheese. US 3973042, United State Patent and Trademark Office

    Google Scholar 

  115. Efimova YM, Terdu AG, Schooneveld-Bergmans MEF et al (2009) Lipases with high specificity towards short chain fatty acids and uses thereof. WO 2009106575, Australian Patent Office

    Google Scholar 

  116. Yamaguchi S, Amaguchi S, Mase T et al (1986) Process for producing glycerides in presence of lipases. EP 0191217, European Patent Office

    Google Scholar 

  117. Uehara H, Arimoto S, Suganuma T et al (2009) Process for production or hard butter suitable for chocolate product. KR 20090031740 Japan Patent Office

    Google Scholar 

  118. Ergan F, Trani M, Andre G (1993) Preparation of Immobilized Lipases and their uses in the synthesis of glycerides. CA 1318624, Canadian Intellectual Property Office

    Google Scholar 

  119. Sumida M, Higashiyama, K (2006) Process for production of transesterified oils/fats or triglycerides. US 2006141592, United State Patent and Trademark Office

    Google Scholar 

  120. Abe S, Arai M (2004) Method for producing medium chain fatty acid-bound phospholipid. JP 2004283043, Japan Patent Office

    Google Scholar 

  121. Chrostensen MW, Holm HC, Abe K (2003) Fat Splitting Process. WO 03040091, World Intellectual Property Organization (WIPO)

    Google Scholar 

  122. Brunner K, Frische R, Kilian D (2002) Method for enzymatic splitting of oils and fats. US 2002197687, United State Patent and Trademark Office

    Google Scholar 

  123. Komatsu SK (1979) Hydrolysis of triglycerides with combination of lipases. CA 1050908, Canadian Intellectual Property Office

    Google Scholar 

  124. Rey MW, Golightly E, Spendler T (2004) Methods for using lipases in baking. US 2003180418, United State Patent and Trademark Office

    Google Scholar 

  125. Laan Van Der JM, Schooneveld-Bergmans MEL (2007) Novel Lipases and uses thereof. WO 2007096201, World Intellectual Property Organization (WIPO)

    Google Scholar 

  126. Teodorescu F, Toma M, Pistol M et al (2006) Bakery premix composition. RO 121070, Romanian State Office for Inventions and Trademarks

    Google Scholar 

  127. Lejeune-Luquet MP, Julien P, Schubert E (2005) Bread improver. EP 1586240, European Patent Office

    Google Scholar 

  128. Aehle W, Gerritse G, Lenting H (2000) Lipases with improved surfactant resistance. US 6017866, United State Patent and Trademark Office

    Google Scholar 

  129. Nitsh C, Jeschlke P, Haerer J (1997) Use of lipasesin low-alkaline mechanical dishwashing agents. WO 9708281, European Patent Office

    Google Scholar 

  130. Frenken GJ, Peters H, Suerbaum HMU et al (1996) Modified Pseudomonas lipases and their use. WO 9600292, European Patent Office

    Google Scholar 

  131. Hashida M, Ikegami N, Abo M et al (1998) Alkaline lipases. US 5763383, united State Patent and Trademark Office

    Google Scholar 

  132. Pierce G, Wick CB, Palmer D (1990) Unique Microbial lipases with activity at temperatures and pHs suitable for use in detergents. EP 0385401, European Patent Office

    Google Scholar 

  133. Svendsen A, Borch K, Gregory PC (2006) Lipases for pharmaceutical use. WO 2006136159, World Intellectual Property Organization (WIPO)

    Google Scholar 

  134. Bertolini G, Bogogna L, Pregnolato M et al (2007) Process for the enantiomeric resolution of 1-substituted 2-(aminomethyl)-pyrrolidines by amidation in the presence of lipases. US 2007105201, United State Patent and Trademark Office

    Google Scholar 

  135. Shlieout G, Boedecher B, Schaefer S et al (2005) Oral pharmaceutical compositions of lipase-containing products, in particular of pancreatin, containing surfactants. WO2005092370, World Intellectual Property Organization (WIPO)

    Google Scholar 

  136. Tsai S (2006) Enzymatic resolution of an alpha-substituted carboxylic acid or an ester thereof by Carica papaya lipase. US 2006003428, United State Patent and Trademark Office

    Google Scholar 

  137. Bosch B, Meissner R, Berendes F et al (2005) Anti-kazlauskas lipases. US 2005153404, United State Patent and Trademark Office

    Google Scholar 

  138. Gatfield A, Hilmer JM (2000) Method for synthesis of aromatic carbonyl compounds from styroles using lipases. EP 1061132, European Patent Office

    Google Scholar 

  139. Braatz R, Kurth R, Menkel-Conen E et al (1997) Use of lipases for producing drugs. US 5645832, United State Patent and Trademark Office

    Google Scholar 

  140. Holla W, Keller R (1995) Process for highly regioselective esterification and ester cleavage on unsaturated sugar compounds with the aid of lipases and esterases. US 5380659, United State Patent and Trademark Office

    Google Scholar 

  141. Huge-Jensen B (1994) Recombinantly produced lipases for therapeutical treatment. WO 9118623, World Intellectual Property Organization (WIPO)

    Google Scholar 

  142. Hui Z, Xiona G, Li W et al (2008) Method for synthesizing feruloylated oligosaccharides by biological catalysis. CN 101191137, China Patent & Trademark Office

    Google Scholar 

  143. Hwang SO, Chung SH (2007) The method of making optically active 2-chloromandelic acid esters and 2-chloromandelic acids by enzymatic method. WO 2007078176, World Intellectual Property Organization (WIPO)

    Google Scholar 

  144. Hwang S, Chung SH (2007) The method of making optically active 3-acyloxy-gamma-butyrolactone and optically active 3-hydroxy-gamma-butyrolatone by enzymatic methods. WO 2007035066, World Intellectual Property Organization (WIPO)

    Google Scholar 

  145. Ramirez Fajardo A, Esteban Cerdan L, Robles Medina A (2008) Eicosapentaenoic acid purification method involves carrying out enzymatic reactions of esterification using lipase obtained from extracts of fish and microalgae. ES 2292341, Oficina Española de Patentes y Marcas

    Google Scholar 

  146. Gatfield IL, Hilmer JM, Bornscheuer U et al (2002) Method for preparing D- or L-menthol. EP 1223223, European Patent Office

    Google Scholar 

  147. Vosmann K, Webet N, Weitkamp P (2009) Enzymatic esterification to prepare saturated medium chain, optionally branched alkyl benzoate and alkyl phenyl acetate, comprises reacting benzoic- and phenyl acetic- acid derivatives with alcohol and lipases, and removing water. DE 102007039736, Deutsches Patent- und Markenamt (DPMA)

    Google Scholar 

  148. Wang X, Ma J, Jiang C et al (2010) Use of 1,3-selective lipases for pitch control in pulp and paper processes. US 2010269989, United State Patent and Trademark Office

    Google Scholar 

  149. Wang X, Ma H, Jian H et al (2007) Treatment of wood chips using enzymes. WO 2007035481, World Intellectual Property Organization (WIPO)

    Google Scholar 

  150. Wang X, Ma J, Tausche J (2006) System for control of stichies in recovered and virgin paper processing. WO 2006029404, World Intellectual Property Organization (WIPO)

    Google Scholar 

  151. Borch K, Franks N, Lund H et al (2003) Oxidizing enzymes in the manufacture of paper materials.(), United State Patent and Trademark Office

    Google Scholar 

  152. Festet G, Haensel E, Kleini H et al (2000) Process for enzymatic decomposition of biodegradable adhesives for the cleaning of vessels, workplaces and equipment, using an aqueous solution containing one or more lipases or cutinases. DE 19834359, Deutsches Patent- und Markenamt (DPMA)

    Google Scholar 

  153. Meier R, Marquis T (2006) Installation for the aerobic biodegradation of fats or so-called physico-chemical sludge in particular from agriculture and food industry. EP 1707540, European Patent Office

    Google Scholar 

  154. Sommer H (2004) Improving the separation properties in activated precipitation in waste water treatment involves addition of enzyme mixtures to favor floc-forming microorganism metabolisms. DE 10261349, Deutsches Patent- und Markenamt (DPMA)

    Google Scholar 

  155. Valentin S (2004) Waste water drain cleaning and maintenance procedure consists of fitting branch with vertical chamber containing active cleansing product. FR 2846984, European Patent Office

    Google Scholar 

  156. Liu D, Du W, Li L et al (2005) Technique for producing biologic diesel oil through combination of different lipases. CN 1687313, China Patent & Trademark Office

    Google Scholar 

  157. Wei D, Dehua L, Dan L (2009) Technique for preparing biodiesel by catalyzing oil using recovery of non-immobilized lipase. CN 101381614, China Patent & Trademark Office

    Google Scholar 

  158. Wei D, Dehua L, Zhangqun D (2008) Technique for preparing 1,3-diglyceride in petroleum ether medium system by enzyme method. CN 101260417, China Patent & Trademark Office

    Google Scholar 

  159. Wei D, Dehua L (2008) Enzyme method technique for improving bio-diesel yield by adding short-chain alcohol in organic medium. CN 101250424, China Patent & Trademark Office

    Google Scholar 

  160. Jiaxin C, Jingang Z, Laixi Y (2008) Gasoline and diesel oil additive with power-increasing and energy-saving function. CN 101240201, Office CPT

    Google Scholar 

  161. Sato M, Kojima M, Boku R et al (2006) Ester synthesizing catalyst and production method thereof and production method of biofuel using the catalyst. JP 2006272326, Japan Patent Office

    Google Scholar 

  162. Haering D, Aering D, Meisenburg U et al (2010) Process for producing of epoxy-containing (meth) acrylic esters, using lipases. US 2010048927, United State Patent and Trademark Office

    Google Scholar 

  163. Albang R, Folkers U, Fritz A et al (2004) Novel lipases and uses thereof. WO 2004018660, World Intellectual Property Organization (WIPO)

    Google Scholar 

  164. Moreu H, Verger R, Lecat D et al (1991) Lipases and lipase extracts, their preparation process and their therapeutic use. US 5075231, United State Patent and Trademark Office

    Google Scholar 

  165. Morita H, Masaoka T, Suzuki T (2010) Anti-obesity agent and anti-obesity food. Office USPAT

    Google Scholar 

  166. Svendsen A, Skjoet M, Yaver D et al (2010) Lipase variants for pharmaceutical use. WO 2008079685, World Intellectual Property Organization (WIPO)

    Google Scholar 

  167. Qinghui Z, Jianying W (2009) Lipase-containing composition. CN 101518646, China Patent & Trademark Office

    Google Scholar 

  168. Chisti Y, Flickinger MC (2009) Solid substrate fermentations, enzyme production. Food enrichment. John Wiley & Sons, New York, NY

    Google Scholar 

  169. Gupta R, Gupta N, Rathi P (2004) Bacterial lipases: an overview of production, purification and biochemical properties. Appl Microbiol Biotechnol 64:763–781

    Article  PubMed  CAS  Google Scholar 

  170. Jaeger KE, Reetz MT (1998) Microbial lipases form versatile tools for biotechnology. Trends Biotechnol 16:396–403

    Article  PubMed  CAS  Google Scholar 

  171. Aimee Mireille Alloue W, Aguedo M, Destain J et al (2008) Les lipases immobilisées et leurs applications. BASE 12:55–68

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophie Duquesne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Casas-Godoy, L., Duquesne, S., Bordes, F., Sandoval, G., Marty, A. (2012). Lipases: An Overview. In: Sandoval, G. (eds) Lipases and Phospholipases. Methods in Molecular Biology, vol 861. Humana Press. https://doi.org/10.1007/978-1-61779-600-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-600-5_1

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-599-2

  • Online ISBN: 978-1-61779-600-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics