Skip to main content

A Computational Approach to Predict Suitable Target Sites for trans-Acting Minimal Hammerhead Ribozymes

  • Protocol
  • First Online:
Ribozymes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 848))

Abstract

Trans-acting hammerhead ribozymes are challenging tools for diagnostic, therapeutic, and biosensoristic purposes, owing to their specificity, efficiency, and great flexibility of use. One of the main problems in their application is related to the difficulties in the design of active molecules and identification of suitable target sites.

The aim of this chapter is to describe ALADDIN, “SeArch computing tooL for hAmmerheaD ribozyme DesIgN,” an open-access tool able to automatically identify suitable cleavage sites and provide a set of hammerhead ribozymes putatively active against the selected target.

ALADDIN is a fast, cheap, helpful, and accurate tool designed to overcome the problems in the design of trans-acting minimal hammerhead ribozymes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Citti, L., and Rainaldi, G. (2005) Synthetic hammerhead ribozymes as therapeutic tools to control disease genes, Current Gene Therapy 5, 11–24.

    PubMed  CAS  Google Scholar 

  2. Usman N, Beigelman L, McSwiggen JA. (1996) Hammerhead ribozyme engineering. Current Opinion in Structural Biology 4 527533.

    Article  Google Scholar 

  3. Kronenwett, R., Haas, R., and Sczakiel, G. (1996) Kinetic selectivity of complementary nucleic acids: bcr-abl-directed antisense RNA and ribozymes, Journal of Molecular Biology 259, 632–644.

    Article  PubMed  CAS  Google Scholar 

  4. Jarvis, T. C., Wincott, F. E., Alby, L. J., McSwiggen, J. A., Beigelman, L., Gustofson, J., DiRenzo, A., Levy, K., Arthur, M., MatulicAdamic, J., Karpeisky, A., Gonzalez, C., Woolf, T. M., Usman, N., and Stinchcomb, D. T. (1996) Optimizing the cell efficacy of synthetic ribozymes - Site selection and chemical modifications of ribozymes targeting the proto-oncogene c-myb, Journal of Biological Chemistry 271, 29107–29112.

    Article  PubMed  CAS  Google Scholar 

  5. Scherr, M., and Rossi, J. J. (1998) Rapid determination and quantitation of the accessibility to native RNAs by antisense oligodeoxynucleotides in murine cell extracts, Nucleic Acids Research 26, 5079–5085.

    Article  PubMed  CAS  Google Scholar 

  6. Lieber, A., and Strauss, M. (1995) Selection of efficient cleavage sites in target RNAs by using a ribozyme expression library, Molecular and Cellular Biology 15, 540–551.

    PubMed  CAS  Google Scholar 

  7. Mir, A. A., Lockett, T. J., and Hendry, P. (2001) Identifying ribozyme-accessible sites using NUH triplet-targeting gapmers, Nucleic Acids Research 29, 1906–1914.

    Article  PubMed  CAS  Google Scholar 

  8. Pan, W. H., Xin, P., Bui, V., and Clawson, G. A. (2003) Rapid identification of efficient target cleavage sites using a hammerhead ribozyme library in an iterative manner, Molecular Therapy 7, 129–139.

    Article  PubMed  CAS  Google Scholar 

  9. Ellington, A. D., Chen, X., Robertson, M., and Syrett, A. (2009) Evolutionary origins and directed evolution of RNA, International Journal of Biochemistry & Cell Biology 41, 254–265.

    Article  CAS  Google Scholar 

  10. Tedeschi, L., Lande, C., Cecchettini, A., and Citti, L. (2009) Hammerhead ribozymes in therapeutic target discovery and validation, Drug Discovery Today 14, 776–783.

    Article  PubMed  CAS  Google Scholar 

  11. Zuker, M. (1989) On finding all suboptimal foldings of an RNA molecule, Science 244, 48–52.

    Article  PubMed  CAS  Google Scholar 

  12. McCaskill, J. S. (1990) The equilibrium partition function and base pair binding probabilities for RNA secondary structure, Biopolymers 29, 1105–1119.

    Article  PubMed  CAS  Google Scholar 

  13. Ding, Y., and Lawrence, C. E. (2003) A statistical sampling algorithm for RNA secondary structure prediction, Nucleic Acids Research 31, 7280–7301.

    Article  PubMed  CAS  Google Scholar 

  14. Markham, N. R., and Zuker, M. (2008) UNAFold - Software for nucleic acid folding and hybridization, Methods in Molecular Biology:Volume II: Structure, function and applications, 3–31.

    Google Scholar 

  15. Mercatanti, A., Rainaldi, G., Mariani, L., Marangoni, R., and Citti, L. (2002) A method for prediction of accessible sites on an mRNA sequence for target selection of hammerhead ribozymes, Journal of Computational Biology 9, 641–653.

    Article  PubMed  CAS  Google Scholar 

  16. Mathews, D. H., Disney, M. D., Childs, J. L., Schroeder, S. J., Zuker, M., and Turner, D. H. (2004) Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure, Proceedings of the National Academy of Sciences of the United States of America 101, 7287–7292.

    Article  PubMed  CAS  Google Scholar 

  17. Pennati, M., Binda, M., Colella, G., Zoppe, M., Folini, M., Vignati, S., Valentini, A., Citti, L., De Cesare, M., Pratesi, G., Giacca, M., Daidone, M. G., and Zaffaroni, N. (2004) Ribozyme-mediated inhibition of Survivin expression increases spontaneous and drug-induced apoptosis and decreases the tumorigenic potential of human prostate cancer cells, Oncogene 23, 386–394.

    Article  PubMed  CAS  Google Scholar 

  18. Citti L, Boldrini L, Nevischi S, Mariani L, Rainaldi G. (1997) Quantitation of in vitro activity of synthetic trans-acting ribozymes using HPLC, Biotechniques, 23, 898–903.

    PubMed  CAS  Google Scholar 

  19. Poliseno L, Bianchi L, Citti L, Liberatori S, Mariani L, Salvetti A, Evangelista M, Bini L, Pallini V, Rainaldi G., (2004), Bcl2-low-expressing MCF7 cells undergo necrosis rather than apoptosis upon staurosporine treatment. Biochemical Journal 1;823–832.

    Article  Google Scholar 

  20. Hertel, K.J. et al. (1992) Numbering system for the hammerhead ribozyme. Nucleic Acids Res. 20, 3252.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Citti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Mercatanti, A., Lande, C., Citti, L. (2012). A Computational Approach to Predict Suitable Target Sites for trans-Acting Minimal Hammerhead Ribozymes. In: Hartig, J. (eds) Ribozymes. Methods in Molecular Biology, vol 848. Humana Press. https://doi.org/10.1007/978-1-61779-545-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-545-9_21

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-544-2

  • Online ISBN: 978-1-61779-545-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics