Skip to main content

In Vitro Selection of Metal Ion-Selective DNAzymes

  • Protocol
  • First Online:
Ribozymes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 848))

Abstract

The discovery of DNAzymes that can catalyze a wide range of reactions in the presence of metal ions is important on both fundamental and practical levels; it advances our understanding of metal–nucleic acid interactions and allows for the design of highly sensitive and selective metal ion sensors. A crucial factor in this success is a technique known as in vitro selection, which can rapidly select metal-specific RNA-cleaving DNAzymes. In vitro selection is an iterative process where a DNA pool containing a random region is incubated with the target metal ion. Those DNA sequences that catalyze the preferred reaction (the “winners”) are amplified and carried on to the next step, where the selection is carried out under more stringent conditions. In this way, the selection pool becomes enriched with DNAzymes that exhibit desirable activity and selectivity. The method described can be applied to isolate DNAzymes selective to many different types of metal ions or different oxidation states of the same metal ion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Breaker R, Joyce G (1994) A DNA Enzyme that Cleaves RNA. Chem Biol 1:223-229.

    Article  PubMed  CAS  Google Scholar 

  2. Li Y, Sen D (1996) A Catalytic DNA for Porphyrin Metallation. Nat Struct Biol 3:743–747.

    Article  PubMed  CAS  Google Scholar 

  3. Lu Y (2002) New Transition Metal Ion-Dependent Catalytic DNA and Their Applications as Efficient RNA Nucleases and as Sensitive Metal Ion Sensors. Chem Euro J 8:4588–4596.

    Article  PubMed  CAS  Google Scholar 

  4. Li Y, Liu Y, Breaker R (2000) Capping DNA with DNA. Biochem 39:3106–3114.

    Article  CAS  Google Scholar 

  5. Schlosser K, Li Y (2009) Biologically Inspired Synthetic Enzymes Made from DNA. Chem Biol 16:311–322.

    Article  PubMed  CAS  Google Scholar 

  6. Silverman S (2008) Catalytic DNA (Deoxyribozymes) for Synthetic Applications—Current Abilities and Future Prospects. Chem Commun 3467–3485.

    Google Scholar 

  7. Lu Y, Liu J (2006) Functional DNA Nanotechnology: Emerging Applications of DNAzymes and Aptamers. Curr Opion Biotech 17:580–588.

    Article  PubMed  Google Scholar 

  8. Franzen S (2010) Expanding the Catalytic Repertoire of Ribozymes and Deoxyribozymes Beyond RNA Substrates. Curr Opin Mol Ther 12:223–232.

    PubMed  CAS  Google Scholar 

  9. McManus S, Li Y (2010) The Structural Diversity of Deoxyribozymes. Molecules 15:6269–6284.

    Article  PubMed  CAS  Google Scholar 

  10. Li J, Lu Y (2000) A Highly Sensitive and Selective Catalytic DNA Biosensor for Lead Ions. J Am Chem Soc 122:10466–10467.

    Article  CAS  Google Scholar 

  11. Liu J, Lu Y (2003) A Colorimetric Lead Biosensor Using DNAzyme-Directed Assembly of Gold Nanoparticles. J Am Chem Soc 125:6642–6643.

    Article  CAS  Google Scholar 

  12. Xiao Y, Rowe A, Plaxco K (2007) Electrochemical Detection of Parts-per-billion Lead via an Electrode-Bound DNAzyme Assembly. J Am Chem Soc 129:262–263.

    Article  PubMed  CAS  Google Scholar 

  13. Lan T, Furuya K, Lu Y (2010) A Highly Selective Lead Sensor Based on a Classic Lead DNAzyme. Chem Commun 46:3896–3898.

    Article  CAS  Google Scholar 

  14. Liu J, Brown A, Meng X, Cropek D, Istok J, Watson D, Lu Y (2007) A Catalytic Beacon Sensor for Uranium with Parts-per-trillion Sensitivity and Millionfold Selectivity. P Natl Acad Sci USA 104:2056–2061.

    Article  CAS  Google Scholar 

  15. Li J, Zheng W, Kwon A, Lu Y (2000) In Vitro Selection and Characterization of a Highly Efficient Zn(II)-dependent RNA-cleaving Deoxyribozyme. Nucleic Acids Res. 28:481–488.

    Article  PubMed  CAS  Google Scholar 

  16. Li Y, Breaker R (1999) Kinetics of RNA Degradation by Specific Base Catalysis of Transesterification Involving the 2′-Hydroxyl Group. J Am Chem Soc 121: 5364–5372.

    Article  CAS  Google Scholar 

  17. Vant-Hull B, Gold L, Zichi D (2000) Theoretical Principles of In Vitro Selection using Combinatorial Nucleic Acid Libraries. In: Egli M, Herdewijn, P, Matusda, A, Sangyi Y (ed) Current Protocols in Nucleic Acid Chemistry. Wiley, New York.

    Google Scholar 

  18. Schlosser K, Li Y (2009) DNAzyme-mediated Catalysis with Only Guanosine and Cytidine Nucleotides. Nucleic Acids Res 37:413–420.

    Article  PubMed  CAS  Google Scholar 

  19. Lam J, Li Y (2010) Influence of Cleavage Site on Global Folding of an RNA-Cleaving DNAzyme. Chem Bio Chem 11: 1710–1719.

    PubMed  CAS  Google Scholar 

  20. Schlosser K, Li Y (2010) A Versatile Endoribonuclease Mimic Made of DNA: Characteristics and Applications of the 8–17 RNA-Cleaving DNAzyme. Chem Bio Chem 11:866–879.

    PubMed  CAS  Google Scholar 

  21. Bruesehoff PJ, Li J, Augustine III, AJ, Lu Y (2002) Improving Metal Ion Specificity During In Vitro Selection of Catalytic DNA. Combinator Chem High Throughput Screening 5:327–335.

    Article  PubMed  CAS  Google Scholar 

  22. Schlosser K, Lam J, Li Y (2009) A Genotype-to-Phenotype Map of In Vitro Selected RNA-cleaving DNAzymes: Implications for Accessing the Target. Nucleic Acids Res 37:3545–3557.

    Article  PubMed  CAS  Google Scholar 

  23. Lam J, Withers J, Li Y (2010) A Complex RNA-Cleaving DNAzyme That Can Efficiently Cleave a Pyrimidine–Pyrimidine Junction. J Mol Bio 400:689–701.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Andrea K. Brown, Debapriya Mazumdar, Nandini Nagraj, Tian Lan, and Seyed-Fakhreddin Torabi for developing and fine-tuning this method. This work was supported by the US National Institutes of Health (ES016865) and Department of Energy (DE-FG02-08ER64568).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ihms, H.E., Lu, Y. (2012). In Vitro Selection of Metal Ion-Selective DNAzymes. In: Hartig, J. (eds) Ribozymes. Methods in Molecular Biology, vol 848. Humana Press. https://doi.org/10.1007/978-1-61779-545-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-545-9_18

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-544-2

  • Online ISBN: 978-1-61779-545-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics