Skip to main content

Metabolomics Protocols for Filamentous Fungi

  • Protocol
  • First Online:
Plant Fungal Pathogens

Abstract

Proteomics and transcriptomics are established functional genomics tools commonly used to study filamentous fungi. Metabolomics has recently emerged as another option to complement existing techniques and provide detailed information on metabolic regulation and secondary metabolism. Here, we describe broad generic protocols that can be used to undertake metabolomics studies in filamentous fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fiehn, O. (2002) Metabolomics - The link between genotypes and phenotypes. Plant Mol. Biol. 48, 155–171.

    Article  PubMed  CAS  Google Scholar 

  2. Goodacre, R., Vaidyanathan, S., Dunn, W.B., Harrigan, G.G. & Kell, D.B. (2004) Metabolomics by numbers: Acquiring and understanding global metabolite data. Trends Biotechnol. 22, 245–252.

    Article  PubMed  CAS  Google Scholar 

  3. Hall, R.D. (2006) Plant metabolomics: From holistic hope, to hype, to hot topic. New Phytol. 169, 453–468.

    Article  PubMed  CAS  Google Scholar 

  4. Weckwerth, W. & Morgenthal, K. (2005) Metabolomics: From pattern recognition to biological interpretation. Drug Discov. Today 10, 1551–1558.

    Article  PubMed  CAS  Google Scholar 

  5. Kell, D.B., Brown, M., Davey, H.M., Dunn, W.B., Spasic, I. & Oliver, S.G. (2005) Metabolic footprinting and systems biology: The medium is the message. Nat. Rev. Microbiol. 3, 557–565.

    Article  PubMed  CAS  Google Scholar 

  6. Oliver, S.G., Winson, M.K., Kell, D.B. & Baganz, F. (1998) Systematic functional analysis of the yeast genome. Trends Biotechnol. 16, 373–378.

    Article  PubMed  CAS  Google Scholar 

  7. Hollywood, K., Brison, D.R. & Goodacre, R. (2006) Metabolomics: Current technologies and future trends. Proteomics 6, 4716–4723.

    Article  PubMed  CAS  Google Scholar 

  8. Throck Watson, J. & David Sparkman, O. (2007) Introduction to Mass Spectrometry: Instrumentation, applications and strategies for data interpretation. Wiley, Chichester.

    Google Scholar 

  9. Dunn, W.B. (2008) Current trends and future requirements for the mass spectrometric investigation of microbial, mammalian and plant metabolomes. Phys. Biol. 5, 1–24.

    Article  Google Scholar 

  10. Lowe, R.G., Lord, M., Rybak, K., Trengove, R.D., Oliver, R.P. & Solomon, P.S. (2008) A metabolomic approach to dissecting osmotic stress in the wheat pathogen Stagonospora nodorum. Fungal Genet. Biol. 45, 1479–1486.

    Article  PubMed  CAS  Google Scholar 

  11. Solomon, P.S., Wilson, T.J.G., Rybak, K., Parker, K., Lowe, R.G.T. & Oliver, R.P. (2006) Structural characterisation of the interaction between Triticum aestivum and the dothideomycete pathogen Stagonospora nodorum. Eur. J. Plant Pathol. 114, 275–282.

    Article  Google Scholar 

  12. Solomon, P.S., Rybak, K., Trengove, R.D. & Oliver, R.P. (2006) Investigating the role of calcium/calmodulin-dependent protein kinases in Stagonospora nodorum. Mol. Microbiol. 62, 367–381.

    Article  PubMed  CAS  Google Scholar 

  13. Tan, K.C., Trengove, R.D., Maker, G.L., Oliver, R.P. & Solomon, P.S. (2009) Metabolite profiling identifies the mycotoxin alternariol in the pathogen Stagonospora nodorum. Metabolomics 5, 330–335.

    Article  CAS  Google Scholar 

  14. Nielsen, K.F. & Smedsgaard, J. (2003) Fungal metabolite screening: Database of 474 mycotoxins and fungal metabolites for dereplication by standardised liquid chromatography-UV-mass spectrometry methodology. J. Chromatogr. A 1002, 111–136.

    Article  PubMed  CAS  Google Scholar 

  15. Dettmer, K., Aronov, P.A. & Hammock, B.D. (2007) Mass spectrometry-based metabolomics. Mass Spectrom. Rev. 26, 51–78.

    Article  PubMed  CAS  Google Scholar 

  16. Nicholson, J.K. & Wilson, I.D. (2003) Understanding ‘global’ systems biology: Metabonomics and the continuum of metabolism. Nat. Rev. Drug Discov. 2, 668–676.

    Article  PubMed  CAS  Google Scholar 

  17. Sumner, L.W., Mendes, P. & Dixon, R.A. (2003) Plant metabolomics: Large-scale phytochemistry in the functional genomics era. Phytochemistry 62, 817–836.

    Article  PubMed  CAS  Google Scholar 

  18. IpCho, S.V.S., Tan, K.-C., Koh, G., Gummer, J., Oliver, R.P., Trengove, R.D. & Solomon, P.S. (2010) The transcription factor StuA regulates central carbon metabolism, mycotoxin production, and effector gene expression in the wheat pathogen Stagonospora nodorum. Eukaryot. Cell 9, 1100–1108.

    Article  PubMed  CAS  Google Scholar 

  19. Halket, J.M. & Zaikin, V.G. (2003) Review: Derivatization in mass spectrometry-1. Silylation. Eur. J. Mass Spectrom. 9, 1–21.

    Article  CAS  Google Scholar 

  20. di Mavungu, J.D., Monbaliu, S., Scippo, M.L., Maghuin-Rogister, G., Schneider, Y.J., Larondelle, Y., Callebaut, A., Robbens, J., C., v.P. & S., d.S. (2009) LC-MS/MS multi-analyte method for mycotoxin determination in food supplements. Food Addit. Contam. A 26, 885–895.

    Google Scholar 

  21. Ren, Y., Zhang, Y., Shao, S., Cai, Z., Feng, L., Pan, H. & Wang, Z. Simultaneous determination of multi-component mycotoxin contaminants in foods and feeds by ultra-performance liquid chromatography tandem mass spectrometry. J. Chromatogr. A 1143, 48–64.

    Google Scholar 

  22. Senyuva, H.Z., Gilbert, J. & Ozturkoglu, S. (2008) Rapid analysis of fungal cultures and dried figs for secondary metabolites by LC/TOF-MS. Anal. Chim. Acta 617, 97–106.

    Article  PubMed  CAS  Google Scholar 

  23. Spanjer, M.C., Rensen, P.M. & Scholten, J.M. (2008) LC-MS/MS multi-method for mycotoxins after single extraction, with validation data for peanut, pistachio, wheat, maize, cornflakes, raisins and figs. Food Addit. Contam. A 25, 472–489.

    Article  CAS  Google Scholar 

  24. Sulyok, M., Krska, R. & Schuhmacher, R. (2007) A liquid chromatography/tandem mass spectrometric multi-mycotoxin method for the quantification of 87 analytes and its application to semi-quantitative screening of moldy food samples. Anal. Bioanal. Chem. 389, 1505–1523.

    Article  PubMed  CAS  Google Scholar 

  25. Vishwanath, V., Sulyok, M., Labuda, R., Bicker, W. & Krska, R. (2009) Simultaneous determination of 186 fungal and bacterial metabolites in indoor matrices by liquid chromatography/tandem mass spectrometry. Anal. Bioanal. Chem. 5, 1355–1372.

    Article  Google Scholar 

  26. de Koker, T.H., Mozuch, M.D., Cullen, D., Gaskell, J. & Kersten, P.J. (2004) Isolation and purification of pyranose 2-oxidase from Phanerochaete chrysosporium and characterization of gene structure and regulation. Appl. Environ. Microbiol. 70, 5794–5800.

    Article  PubMed  Google Scholar 

  27. Donker, H.C.W. & Braaksma, A. (1997) Changes in metabolite concentrations detected by 13C-NMR in the senescing mushroom (Agaricus bisporus). Postharvest Biol. Tec. 10, 127–134.

    Article  CAS  Google Scholar 

  28. Ceccaroli, P., Saltarelli, R., Cesari, P., Pierleoni, R., Sacconi, C., Vallorani, L., Rubini, P., Stocchi, V. & Martin, F. (2003) Carbohydrate and amino acid metabolism in Tuber borchii mycelium during glucose utilization: a 13C NMR study. Fungal Genet. and Biol. 39, 168–175.

    Article  CAS  Google Scholar 

  29. Martin, F., Ramstedt, M., Söderhäll, K. & Canet, D. (1988) Carbohydrate and amino acid metabolism in the ectomycorrhizal ascomycete Sphaerosporella brunnea during glucose utilization. Plant Physiol. 86, 935–940.

    Article  PubMed  CAS  Google Scholar 

  30. Ramstedt, M., Martin, F. & Söderhäll, K. (1989) Mannitol metabolism in the ectomycorrhizal basidiomycete Piloderma croceum during glucose utilization. A 13C-NMR study. Agric. Ecosys. Environ. 28, 409–414.

    Article  Google Scholar 

  31. Thomas, G.H. & Baxter, R.L. (1987) Analysis of mutational lesions of acetate metabolism in Neurospora crassa by 13C nuclear magnetic resonance. J. of Bacteriol. 169, 359–366.

    CAS  Google Scholar 

  32. Yoshida, M., Murai, T. & Moriya, S. (1984) 13C NMR spectra of plant pathogenic fungi. Agric. Biol. Chem. 48, 909–914.

    Article  CAS  Google Scholar 

  33. Jobic, C., Boisson, A.M., Gout, E., Rascle, C., Fèvre, M., Cotton, P. & Bligny, R. (2007) Metabolic processes and carbon nutrient exchanges between host and pathogen sustain the disease development during sunflower infection by Sclerotinia sclerotiorum. Planta 226, 251–265.

    Article  PubMed  CAS  Google Scholar 

  34. Martin, F., Boiffin, V.V. & Pfeffer, P.E. (1998) Carbohydrate and amino acid metabolism in the Eucalyptus globulus-Pisolithus tinctorius ectomycorrhiza during glucose utilization. Plant Physiol. 118, 627–635.

    Article  PubMed  CAS  Google Scholar 

  35. Martin, F., Canet, D. & Marchal, J.P. (1985) 13C nuclear magnetic resonance study of mannitol cycle and trehalose synthesis during glucose utilization by the ectomycorrhizal ascomycete Cenococcum graniforme. Plant Physiol. 77, 499–502.

    Article  PubMed  CAS  Google Scholar 

  36. Martin, F., Canet, D., Marchal, J.-P. & Brondeau, J. (1984) In vivo natural-abundance 13C nuclear magnetic resonance studies of living ectomycorrhizal fungi : observation of fatty acids in Cenococcum graniforme and Hebeloma crustuliniforme. Plant Physiol. 75, 151–153.

    Article  PubMed  CAS  Google Scholar 

  37. Shachar-Hill, Y., Pfeffer, P.E., Douds, D., Osman, S.F., Doner, L.W. & Ratcliffe, R.G. (1995) Partitioning of Intermediary carbon metabolism in vesicular-arbuscular mycorrhizal leek. Plant Physiol. 108, 7–15.

    PubMed  CAS  Google Scholar 

  38. Bago, B., Pfeffer, P.E., Douds, D.D., Jr., Brouillette, J., Bécard, G. & Shachar-Hill, Y. (1999) Carbon metabolism in spores of the arbuscular mycorrhizal fungus Glomus intraradices as revealed by nuclear magnetic resonance spectroscopy. Plant Physiol. 121, 263–272.

    Article  PubMed  CAS  Google Scholar 

  39. Forgue, P., Halouska, S., Werth, M., Xu, K., Harris, S. & Powers, R. (2006) NMR metabolic profiling of Aspergillus nidulans to monitor drug and protein activity. J. Proteome Res. 5, 1916–1923.

    Article  PubMed  CAS  Google Scholar 

  40. Wishart, D.S. & Sykes, B.D. (1994) Chemical shifts as a tool for structure determination. Methods Enzymol. 239, 363–392.

    Article  PubMed  CAS  Google Scholar 

  41. Kanani, H., Chrysanthopoulos, P.K. & Klapa, M.I. (2008) Standardizing GC-MS metabolomics. J. Chromatogr. B 871, 191–201.

    Article  CAS  Google Scholar 

  42. Indarti, E., Majid, M.I.A., Hashim, R. & Chong, A. (2005) Direct FAME synthesis for rapid total lipid analysis from fish oil and cod liver oil. J. Food Compos. Anal. 18, 161–170.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard P. Oliver .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Gummer, J.P.A. et al. (2012). Metabolomics Protocols for Filamentous Fungi. In: Bolton, M., Thomma, B. (eds) Plant Fungal Pathogens. Methods in Molecular Biology, vol 835. Humana Press. https://doi.org/10.1007/978-1-61779-501-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-501-5_15

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-500-8

  • Online ISBN: 978-1-61779-501-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics