Skip to main content

Use of the Yeast Two-Hybrid System to Identify Targets of Fungal Effectors

  • Protocol
  • First Online:
Plant Fungal Pathogens

Part of the book series: Methods in Molecular Biology ((MIMB,volume 835))

Abstract

The yeast two-hybrid (Y2H) system is a binary method widely used to determine direct interactions between paired proteins. Although having certain limitations, this method has become one of the two main systemic tools (along with affinity purification/mass spectrometry) for interactome mapping in model organisms including yeast, Arabidopsis, and humans. It has also become the method of choice for investigating host–pathogen interactions in fungal pathosystems involving crop plants. This chapter describes general procedures to use the GAL4-based Y2H system for identification of host proteins that directly interact with proteinaceous fungal effectors, thus being their potential targets. The procedures described include cDNA library construction through in vivo recombination, library screening by yeast mating and cotransformation, as well as methods to analyze positive clones obtained from library screening. These procedures can also be adapted to confirmation of suspected interactions between characterized host and pathogen proteins or determination of interacting domains in partner proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fields S., and Song O. (1989). A novel genetic system to detect protein-protein interactions. Nature 340, 245–246.

    Article  PubMed  CAS  Google Scholar 

  2. Chien C.T., Bartel P.L., Sternglanz R., and Fields S. (1991). The two-hybrid system: A method to identify and clone genes for proteins that interact with a protein of interest. Proc Natl Acad Sci USA 88, 9578–9582.

    Article  PubMed  CAS  Google Scholar 

  3. Fields S., and Sternglanz R. (1994). The two-hybrid system: An assay for protein-protein interactions. Trends Genet 10, 286–292.

    Article  PubMed  CAS  Google Scholar 

  4. Van Criekinge W., and Beyaert R. (1999). Yeast Two-Hybrid: State of the art. Biol Proced Online 2, 1–38.

    Article  PubMed  Google Scholar 

  5. Walhout A.J., Boulton S.J., and Vidal M. (2000). Yeast two-hybrid systems and protein interaction mapping projects for yeast and worm. Yeast 17, 88–94.

    Article  PubMed  CAS  Google Scholar 

  6. Fields S., and Bartel P.L. (2001). The two-hybrid system. A personal view. Methods Mol Biol 177, 3–8.

    PubMed  CAS  Google Scholar 

  7. Causier B., and Davies B. (2002). Analysing protein-protein interactions with the yeast two-hybrid system. Plant Mol Biol 50, 855–870.

    Article  PubMed  CAS  Google Scholar 

  8. Parrish J.R., Gulyas K.D., and Finley R.L., Jr. (2006). Yeast two-hybrid contributions to interactome mapping. Curr Opin Biotechnol 17, 387–393.

    Article  PubMed  CAS  Google Scholar 

  9. Yu, Haiyuan, et al (2008). High-quality binary protein interaction map of the yeast interactome network. Science 322, 104–110.

    Article  PubMed  CAS  Google Scholar 

  10. Bruckner A., Polge, C., Lentze N., Auerbach D., and Schlattner U. (2009). Yeast two-hybrid, a powerful tool for systems biology. Int J Mol Sci 10, 2763–2788.

    Article  PubMed  CAS  Google Scholar 

  11. De Las Rivas J., and Fontanillo C. (2010). Protein-protein interactions essentials: Key concepts to building and analyzing interactome networks. PLoS Comput Biol 6, e1000807.

    Article  PubMed  Google Scholar 

  12. Johnston S.A., Salmeron J.M., Jr., and Dincher S.S. (1987). Interaction of positive and negative regulatory proteins in the galactose regulon of yeast. Cell 50, 143–146.

    Article  PubMed  CAS  Google Scholar 

  13. Deane C.M., Salwinski L., Xenarios I., and Eisenberg D. (2002). Protein interactions: Two methods for assessment of the reliability of high throughput observations. Mol Cell Proteomics 1, 349–356.

    Article  PubMed  CAS  Google Scholar 

  14. Manning V.A., Hardison L.K., and Ciuffetti L.M. (2007). Ptr ToxA interacts with a chloroplast-localized protein. Mol Plant Microbe Interact 20, 168–177.

    Article  PubMed  CAS  Google Scholar 

  15. Tai Y., Bragg J., and Meinhardt S. (2007). Functional characterization of ToxA and molecular identification of its intracellular targeting protein in wheat American J. Plant Physiol. 2, 76–89.

    Article  CAS  Google Scholar 

  16. Wolpert T.J., Dunkle L.D., and Ciuffetti L.M. (2002). Host-selective toxins and avirulence determinants: What’s in a name? Annu Rev Phytopathol 40, 251–285.

    Article  PubMed  CAS  Google Scholar 

  17. Friesen T.L., Meinhardt S.W., and Faris J.D. (2007) The Stagonospora nodorum-wheat pathosystem involves multiple proteinaceous host-selective toxins and corresponding host sensitivity genes that interact in an inverse gene-for-gene manner. Plant J 51, 681–92.

    Article  PubMed  CAS  Google Scholar 

  18. Stergiopoulos I., and de Wit P.J. (2009). Fungal effector proteins. Annu Rev Phytopathol 47, 233–263.

    Article  PubMed  CAS  Google Scholar 

  19. Ballance G.M., Lamari L., Kowatsch R., and Bernier C.C. (1996). Cloning, expression and occurrence of a gene encoding the Ptr necrosis toxin from Pyrenophora tritici-repentis Mol. Plant Path. On-Line (http://www.bspp.org.uk/mppol/) 1996/1209ballance).

  20. Ciuffetti L.M., Tuori R.P., and Gaventa J.M. (1997). A single gene encodes a selective toxin causal to the development of tan spot of wheat. Plant Cell 9, 135–144.

    Article  PubMed  CAS  Google Scholar 

  21. Friesen T.L., Stukenbrock E.H., Liu Z., Meinhardt S., Ling H., Faris J.D., Rasmussen J.B., Solomon P.S., McDonald B.A., and Oliver R.P. (2006). Emergence of a new disease as a result of interspecific virulence gene transfer. Nat Genet 38, 953–956.

    Article  PubMed  CAS  Google Scholar 

  22. Faris, J.D. Zhang, Z. Lu H., Lu S., Reddy L., Cloutier S., Fellers J.P., Meinhardt S.W., Rasmussen J.B., Xu S.S., Oliver R.P., Simons K.J., and Friesen T.L. (2010). A unique wheat disease resistance-like gene governs effector-triggered susceptibility to necrotrophic pathogens. Proc Natl Acad Sci USA 107, 13544–13549.

    Google Scholar 

  23. Zhu Y.Y., Machleder E.M., Chenchik A., Li, R., and Siebert P.D. (2001). Reverse transcriptase template switching: a SMART approach for full-length cDNA library construction. Biotechniques 30, 892–897.

    PubMed  CAS  Google Scholar 

  24. Shcheglov A., Zhulidov P, Bogdanova E. and Shagin D. (2007) Generation of normalized cDNA libraries. In Nucleic acids hybridization modern applications. Buzdin A. and Lukyanov S. Eds. Springer, Dordrecht, The Netherlands. pp. 316.

    Google Scholar 

  25. Jacobs J.L., Belew A.T., Rakauskaite R. and Dinman J.D. (2007) Identification of functional, endogenous programmed-1 ribosomal frameshift signals in the genome of Saccharomyces cerevisiae. Nucleic Acids Res 35, 165–174.

    Article  PubMed  CAS  Google Scholar 

  26. Naumovski L. (2001). Two-hybrid interactions confirmed by coimmunoprecipitation of epitope-tagged clones. Methods Mol Biol 177, 151–159.

    PubMed  CAS  Google Scholar 

  27. Lee C. (2007). Coimmunoprecipitation assay. Methods Mol Biol 362, 401–406.

    Article  PubMed  CAS  Google Scholar 

  28. Kraichely D.M., and MacDonald P.N. (2001). Confirming yeast two-hybrid protein interactions using in vitro glutathione-S-transferase pulldowns. Methods Mol Biol 177, 135–150.

    PubMed  CAS  Google Scholar 

  29. Vikis H.G., and Guan K.L. (2004). Glutathione-S-transferase-fusion based assays for studying protein-protein interactions. Methods Mol Biol 261, 175–186.

    PubMed  CAS  Google Scholar 

  30. Garcia-Cuellar M.P., Mederer D., and Slany R.K. (2009). Identification of protein interaction partners by the yeast two-hybrid system. Methods Mol Biol 538, 347–367.

    Article  PubMed  CAS  Google Scholar 

  31. Barnard E., McFerran N.V., Trudgett A., Nelson J., and Timson D.J. (2008). Development and implementation of split-GFP-based bimolecular fluorescence complementation (BiFC) assays in yeast. Biochem Soc Trans 36, 479–482.

    Article  PubMed  CAS  Google Scholar 

  32. Arndt-Jovin D.J., and Jovin T.M. (1989). Fluorescence labeling and microscopy of DNA. Methods Cell Biol 30, 417–448.

    Article  PubMed  CAS  Google Scholar 

  33. Sekar R.B., and Periasamy A. (2003). Fluores-cence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations. J Cell Biol 160, 629–633.

    Article  PubMed  CAS  Google Scholar 

  34. Takesako K., Kuroda H., Inoue T., Haruna F., Yoshikawa Y., Kato I., Uchida K., Hiratani T., and Yamaguchi H. (1993). Biological properties of aureobasidin A, a cyclic depsipeptide antifungal antibiotic. J Antibiot (Tokyo) 46, 1414–1420.

    Article  CAS  Google Scholar 

  35. Hashida-Okado T., Ogawa A., Endo M., Yasumoto R., Takesako K., and Kato I. (1996). AUR1, a novel gene conferring aureobasidin resistance on Saccharomyces cerevisiae: a study of defective morphologies in Aur1p-depleted cells. Mol Gen Genet 251, 236–244.

    PubMed  CAS  Google Scholar 

  36. Guo D., Rajamaki M.L., and Valkonen J. (2008). Protein-protein interactions: The yeast two-hybrid system. Methods Mol Biol 451, 421–439.

    Article  PubMed  CAS  Google Scholar 

  37. Iyer K., Burkle L., Auerbach D., Thaminy S., Dinkel M., Engels K., and Stagljar I. (2005). Utilizing the split-ubiquitin membrane yeast two-hybrid system to identify protein-protein interactions of integral membrane proteins. Sci STKE 2005, p. l3.

    Google Scholar 

Download references

Acknowledgments

The author thanks Dr. Timothy Friesen and Dr. Melvin Bolton for reviewing the manuscript. All yeast two-hybrid work performed in the author’s laboratory is funded by the Agricultural Research Service, the United States Department of Agriculture under the CRIS project 5442-21000-033-00D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunwen Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Lu, S. (2012). Use of the Yeast Two-Hybrid System to Identify Targets of Fungal Effectors. In: Bolton, M., Thomma, B. (eds) Plant Fungal Pathogens. Methods in Molecular Biology, vol 835. Humana Press. https://doi.org/10.1007/978-1-61779-501-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-501-5_11

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-500-8

  • Online ISBN: 978-1-61779-501-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics