Skip to main content

Dissociating Behavioral, Autonomic, and Neuroendocrine Effects of Androgen Steroids in Animal Models

Part of the Methods in Molecular Biology book series (MIMB,volume 829)

Abstract

Developments in behavioral assessment, autonomic and/or baseline reactivity, psychopharmacology, and genetics, have contributed significantly to the assessment of performance-enhancing drugs in animal models. Particular classes of steroid hormones: androgenic steroids are of interest. Anecdotally, the performance enhancing effects of androgens are attributed to anabolic events. However, there is a discrepancy between anecdotal evidence and investigative data. While some androgen steroids may promote muscle growth (myogenesis), effects of androgens on performance enhancement are not always seen. Indeed, some effects of androgens on performance may be attributable to their psychological and cardiovascular effects. As such, we consider androgen effects in terms of their behavioral, autonomic, and neuroendocrine components. Techniques are discussed in this chapter, some of which are well established, while others have been more recently developed to study androgen action. Androgens may be considered for their positive impact, negative consequence, or psychotropic properties. Thus, this review aims to elucidate some of the effects and/or mechanisms of androgens on behavioral, autonomic, and/or neuroendocrine assessment that may underlie their controversial performance enhancing effects.

Key words

  • Androgen
  • Anabolic-steroid
  • Performance enhancement
  • Affect
  • Cognition
  • Myogenesis
  • Animal model

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-61779-458-2_26
  • Chapter length: 35 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-1-61779-458-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.00
Price excludes VAT (USA)
Hardcover Book
USD   199.00
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Howell S. and Shalet S., (2001) Testosterone deficiency and replacement. Horm Res. 56, 86–92.

    CAS  Google Scholar 

  2. Dunger, D. B., Ahmed, M.L., and Ong, K.K. (2006) Early and late weight gain and the timing of puberty. Mol Cell Endocrinol. 254, 140–5.

    PubMed  CrossRef  CAS  Google Scholar 

  3. Root, A. W. (2002) Bone strength and the adolescent. Adolesc Med. 13, 53–72.

    PubMed  Google Scholar 

  4. Gombos, Z., Hermann, R., Veijola, R., Knip, M., Simell, O., Pollanen, P., and Ilonen, J. (2003) Androgen receptor gene exon 1 CAG repeat polymorphism in Finnish patients with childhood-onset type 1 diabetes. Eur J Endocrinol. 149, 597–600.

    PubMed  CAS  CrossRef  Google Scholar 

  5. Singh, R., Artaza, J. N., Taylor, W. E., Braga, M., Yuan, X., Gonzalez-Cadavid, N. F., and Bhasin, S. (2006) Testosterone inhibits adipogenic differentiation in 3 T3-L1 cells: nuclear translocation of androgen receptor complex with beta-catenin and T-cell factor 4 may bypass canonical Wnt signaling to down-regulate adipogenic transcription factors. Endocrinology. 147, 141–54.

    PubMed  CAS  CrossRef  Google Scholar 

  6. Sinha-Hikim, I., Taylor, W. E., Gonzalez-Cadavid, N. F., Zheng, W., and Bhasin, S. (2004) Androgen receptor in human skeletal muscle and cultured muscle satellite cells: up-regulation by androgen treatment. J Clin Enndocrinol Metab. 89, 5245–55.

    CAS  CrossRef  Google Scholar 

  7. Marcus, J., Maccoby, E. E., Jacklin, C.N., and Doering, C.H. (1985) Dev Psychobiol. 18, 327–40.

    PubMed  CAS  CrossRef  Google Scholar 

  8. Geier, D. A., Kern, J. K., and Geier, M. R. (2010) The biological basis of autism spectrum disorders: understanding causation and treatment by clinical geneticists. Acta Neurobiol Exp (Wars) 70, 209–26.

    Google Scholar 

  9. Whitehouse, A. J., Maybery, M. T., Hart, R., Mattes, E., Newnham, J. P., Soboda, D. M., Stanley, F. J., and Hickey, M. (2010) Fetal androgen exposure and pragmatic language ability of girls in middle childhood: implications for the extreme male-brain theory of autism. Psychoneuroendocrinology 35, 1259–64.

    PubMed  CrossRef  Google Scholar 

  10. Pajer K. Tabbah R., Gardner W., Rubin R. T., Czambel R. K., and Wang Y. (2006) Adrenal androgen and gonadal hormone levels in adolescent girls with conduct disorder. Psychoneuroendocrinology 31, 1245–56.

    PubMed  CAS  CrossRef  Google Scholar 

  11. Rowe R., Maughan B., Worthman C. M., Costello E. J., and Angold A. (2004) Testosterone, antisocial behavior, and social dominance in boys: pubertal development and biosocial interaction. Biol Psychiatry 55, 546–52.

    PubMed  CAS  CrossRef  Google Scholar 

  12. van Anders SM, Hamilton LD, and Watson NV. (2007) Multiple partners are associated with higher testosterone in North American men and women. Horm. Behav. 51, 454–9.

    PubMed  CrossRef  CAS  Google Scholar 

  13. Anderson R. A., Bancroft J., and Wu F. C. (1992) The effects of exogenous testosterone on sexuality and mood of normal men. J Clin Endocrinol Metab. 75, 1503–7.

    PubMed  CAS  CrossRef  Google Scholar 

  14. Kuepper Y., Alexander N., Osinsky R., Mueller E., Schmitz A., Netter P., and Hennig J. (2010) Aggression – interactions of serotonin and testosterone in healthy men and women. Behav Brain Res. 206, 93–100.

    PubMed  CAS  CrossRef  Google Scholar 

  15. Sternbach H. (1998) Age-associated testosterone decline in men: clinical issues for psychiatry. Am J Psychiatry. 155, 1310–8.

    PubMed  CAS  Google Scholar 

  16. Christiansen K., and Knussmann R. (1987) Sex hormones and cognitive functioning in men. Neuropsychobiology. 18, 27–36.

    PubMed  CAS  CrossRef  Google Scholar 

  17. Janowsky J. S., Chavez B., and Orwoll E. (2000) Sex steroids modify working memory. J Cogn Neurosci. 12, 407–14.

    PubMed  CAS  CrossRef  Google Scholar 

  18. Janowsky J. S., Oviatt S. K., and Orwoll E.S. (1994) Testosterone influences spatial cognition in older men. Behav Neurosci. 108, 325–32.

    PubMed  CAS  CrossRef  Google Scholar 

  19. Wang C., Alexander G., Berman N., Salehian B., Davidson T., McDonald V., Steiner B., Hull L., Callegari C., and Swerdloff R. S. (1996) Testosterone replacement therapy improves mood in hypogonadal men – a clinical research center study. J Clin Endocrinol Metab. 81, 3578–83.

    PubMed  CAS  CrossRef  Google Scholar 

  20. Alexander G. M., Swerdloff R. S., Wang C., Davidson T., McDonald V., Steiner B., and Hines M. (1997) Androgen-behavior correlations in hypogonadal men and eugonadal men. I. Mood and response to auditory sexual stimuli. Horm Behav. 31, 110–9.

    CAS  Google Scholar 

  21. Basaria S., and Dobs A.S. (2001) Hypogonadism and androgen replacement therapy in elderly men. Am J Med. 110, 563–72.

    PubMed  CAS  CrossRef  Google Scholar 

  22. Sloan D. M., and Kornstein S. G. (2003) Gender differences in depression and response to antidepressant treatment. Psychiatr Clin North Am. 26, 581–94.

    PubMed  CrossRef  Google Scholar 

  23. Zender R., and Olshansky E. (2009) Women’s mental health: depression and anxiety. Nurs Clin North Am. 44, 355–64.

    PubMed  CrossRef  Google Scholar 

  24. Williams C. L., and Meck W. H. (1991) The organizational effects of gonadal steroids on sexually dimorphic spatial ability. Psychoneuroendocrinology 16, 155–76.

    PubMed  CAS  CrossRef  Google Scholar 

  25. Frick K. M., Burlingame L. A., Arters J. A., and Berger-Sweeney J. (2000) Reference memory, anxiety and estrous cyclicity in C57BL/6NIA mice are affected by age and sex. Neuroscience. 95, 293–307.

    PubMed  CAS  CrossRef  Google Scholar 

  26. Johnston A. L., and File S. E. (1991) Sex differences in animal tests of anxiety. Physiol Behav. 49, 245–50.

    PubMed  CAS  CrossRef  Google Scholar 

  27. Kosten T. R., Kosten T. A., McDougle C. J., Hameedi F. A., McCance E. F., Rosen M. I., Oliveto A. H., and Price L. H. (1996) Gender differences in response to intranasal cocaine administration to humans. Biol Psychiatry. 39, 147–8.

    PubMed  CAS  CrossRef  Google Scholar 

  28. Becker J. B., and Hu M. (2008) Sex differences in drug abuse. Front Neuroendocrinol. 29, 36–47.

    PubMed  CAS  CrossRef  Google Scholar 

  29. Bitran D., Hilvers R. J., Frye C. A., and Erskine M. S. (1996) Chronic anabolic-androgenic steroid treatment affects brain GABA(A) receptor-gated chloride ion transport. Life Sci. 58, 573–83.

    PubMed  CAS  CrossRef  Google Scholar 

  30. Bitran D., Kellogg C. K., and Hilvers R. J. (1993) Treatment with an anabolic-androgenic steroid affects anxiety-related behavior and alters the sensitivity of cortical GABAA receptors in the rat. Horm Behav. 27, 568–83.

    PubMed  CAS  CrossRef  Google Scholar 

  31. Frye C. A., and Lacey E. H. (2001) Posttraining androgens’ enhancement of cognitive performance is temporally distinct from androgens’ increases in affective behavior. Cogn Affect Behav Neurosci. 1, 172–82.

    PubMed  CAS  CrossRef  Google Scholar 

  32. Frye C. A., Edinger K. L., Lephart E. D., and Walf A. A. (2010) 3alpha-androstanediol, but not testosterone, attenuates age-related decrements in cognitive, anxiety, and depressive behavior of male rats. Front Aging Neurosci. 8, 2–5.

    Google Scholar 

  33. Walf A. A., and Frye C. A. (2007) The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nat Protoc. 2, 322–8.

    PubMed  CAS  CrossRef  Google Scholar 

  34. Edinger K. L., and Frye C. A. (2005) Testosterone’s anti-anxiety and analgesic effects may be due in part to actions of its 5alpha-reduced metabolites in the hippocampus. Psychoneuroendocrinology. 30, 418–30.

    PubMed  CAS  CrossRef  Google Scholar 

  35. Edinger K. L., and Frye C. A. (2006) Intrahippocampal administration of an androgen receptor antagonist, flutamide, can increase anxiety-like behavior in intact and DHT-replaced male rats. Horm Behav. 50, 216–22.

    PubMed  CAS  CrossRef  Google Scholar 

  36. Edinger K. L., and Frye C. A. (2007) Androgens’ performance-enhancing effects in the inhibitory avoidance and water maze tasks may involve actions at intracellular androgen receptors in the dorsal hippocampus. Neurobiol Learn Mem. 87, 201–8.

    PubMed  CAS  CrossRef  Google Scholar 

  37. Frye C. A., Koonce C. J., Edinger K. L., Osborne D. M., and Walf A. A. (2008) Androgens with activity at estrogen receptor beta have anxiolytic and cognitive-enhancing effects in male rats and mice. Horm Behav. 54, 726–34.

    PubMed  CAS  CrossRef  Google Scholar 

  38. Frye C. A., Edinger K., and Sumida K. (2008) Androgen administration to aged male mice increases anti-anxiety behavior and enhances cog­nitive performance. Neuropsychopharmacology. 33, 1049–61.

    PubMed  CAS  CrossRef  Google Scholar 

  39. Frye C. A., and Edinger K. L. (2004) Testosterone’s metabolism in the hippocampus may mediate its anti-anxiety effects in male rats. Pharmacol Biochem Behav. 78, 473–81.

    PubMed  CAS  CrossRef  Google Scholar 

  40. Aikey JL, Nyby JG, Anmuth DM, and James PJ. (2002) Testosterone rapidly reduces anxiety in male house mice (Mus musculus). Horm Behav. 42, 448–60.

    PubMed  CAS  CrossRef  Google Scholar 

  41. Osborne D. M., Edinger K., and Frye C. A. (2009) Chronic administration of androgens with actions at estrogen receptor beta have anti-anxiety and cognitive-enhancing effects in male rats. Age (Dordr). 31, 191–8.

    CAS  CrossRef  Google Scholar 

  42. Walf A. A., Paris J. J., and Frye C. A. (2009) Chronic estradiol replacement to aged female rats reduces anxiety-like and depression-like behavior and enhances cognitive performance. Psychoneuroendocrinology. 34, 909–16.

    PubMed  CAS  CrossRef  Google Scholar 

  43. Buddenberg T. E., Komorowski M., Ruocco L. A., Silva M. A., and Topic B. (2009) Attenuating effects of testosterone on depressive-like behavior in the forced swim test in healthy male rats. Brain Res Bull. 79, 182–6.

    PubMed  CAS  CrossRef  Google Scholar 

  44. Frye C. A., and Sturgis J. D. (1995) Neurosteroids affect spatial/reference, working, and long-term memory of female rats. Neurobiol Learn Mem. 64, 83–96.

    PubMed  CAS  CrossRef  Google Scholar 

  45. Boyle G. J., Neumann D. L., Furedy J. J., and Westbury H. R. (2010) Sex differences in verbal and visual-spatial tasks under different hemispheric visual-field presentation conditions. Percept Mot Skills. 110, 396–410.

    PubMed  CrossRef  Google Scholar 

  46. Leggett V., Jacobs P., Nation K., Scerif G., and Bishop D. V. (2010) Neurocognitive outcomes of individuals with a sex chromosome trisomy: XXX, XYY, or XXY: a systematic review. Dev Med Child Neurol. 52, 119–29.

    PubMed  CrossRef  Google Scholar 

  47. Frye C. A., and Seliga A. M. (2001) Testosterone increases analgesia, anxiolysis, and cognitive performance of male rats. Cogn Affect Behav Neurosci. 1, 371–81.

    PubMed  CAS  CrossRef  Google Scholar 

  48. Kritzer M. F., and Pugach I. (2001) Administration of tamoxifen but not flutamide to hormonally intact, adult male rats mimics the effects of short-term gonadectomy on the catecholamine innervation of the cerebral cortex. J Comp Neurol. 431, 444–59.

    PubMed  CAS  CrossRef  Google Scholar 

  49. Benice T. S., and Raber J. (2009) Dihydrotestosterone modulates spatial working-memory performance in male mice. J Neurochem. 110, 902–11.

    PubMed  CAS  CrossRef  Google Scholar 

  50. Edinger K. L., and Frye C. A. (2004) Testosterone’s analgesic, anxiolytic, and cognitive-enhancing effects may be due in part to actions of its 5alpha-reduced metabolites in the hippocampus. Behav Neurosci. 118, 1352–64.

    PubMed  CAS  CrossRef  Google Scholar 

  51. Edinger K. L., Lee B., and Frye C. A. (2004) Mnemonic effects of testosterone and its 5alpha-reduced metabolites in the conditioned fear and inhibitory avoidance tasks. Pharmacol Biochem Behav. 78, 559–68.

    PubMed  CAS  CrossRef  Google Scholar 

  52. Frye C. A., Edinger K. L., Seliga A. M., and Wawrzycki J. M. (2004) 5alpha-reduced androgens may have actions in the hippocampus to enhance cognitive performance of male rats. Psychoneuroendocrinology. 29, 1019–27.

    PubMed  CAS  CrossRef  Google Scholar 

  53. Frye C. A., and McCormick C. M. (2000) The neurosteroid, 3alpha-androstanediol, prevents inhibitory avoidance deficits and pyknotic cells in the granule layer of the dentate gyrus induced by adrenalectomy in rats. Brain Res. 855, 166–70.

    PubMed  CAS  CrossRef  Google Scholar 

  54. Frye C. A., Park D., Tanaka M., Rosellini R., and Svare B. (2001) The testosterone metabolite and neurosteroid 3alpha-androstanediol may mediate the effects of testosterone on conditioned place preference. Psychoneuroendocrinology. 26, 731–50.

    PubMed  CAS  CrossRef  Google Scholar 

  55. Frye C. A., Rhodes M. E., Rosellini R., Svare B. (2002) The nucleus accumbens as a site of action for rewarding properties of testosterone and its 5alpha-reduced metabolites. Pharmacol Biochem Behav. 74, 119–27.

    PubMed  CAS  CrossRef  Google Scholar 

  56. Pike C. J., Carroll J. C., Rosario E. R., Barron A. M. (2009) Protective actions of sex steroid hormones in Alzheimer’s disease. Front Neuroendocrinol. 30, 239–58.

    PubMed  CAS  CrossRef  Google Scholar 

  57. Rosario E.R., Chang L., Head E.H., Stanczyk F.Z., Pike C.J. (2011) Brain levels of sex steroid hormones in men and women during normal aging and in Alzheimer’s disease. Neurobiol Aging. 32, 604–613.

    Google Scholar 

  58. Nguyen TV, Jayaraman A, Quaglino A, Pike CJ. (2010) Androgens selectively protect against apoptosis in hippocampal neurones. J Neuroendocrinol. 22, 1013–22.

    PubMed  CAS  CrossRef  Google Scholar 

  59. Raber J. (2008) AR, apoE, and cognitive function. Horm Behav. 53, 706–15.

    PubMed  CAS  CrossRef  Google Scholar 

  60. Frye C. A., Sturgis J. D. (1995) Neurosteroids affect spatial/reference, working, and long-term memory of female rats. Neurobiol Learn Mem. 64, 83–96.

    PubMed  CAS  CrossRef  Google Scholar 

  61. Kanit, L., Taskiran, D., Yilmaz, O. A., Balkan, B., Demirgoren, S., Furedy, J. J., and Pogun, S. (2000) Sexually dimorphic cognitive styles in rats emerges after puberty. Brain Res Bull. 52, 243–248.

    PubMed  CAS  CrossRef  Google Scholar 

  62. Frye C. A., Duffy C. K., and Walf A. A. (2007) Estrogens and progestins enhance spatial learning of intact and ovariectomized rats in the object placement task. Neurobiol Learn Mem. 88, 208–16.

    PubMed  CAS  CrossRef  Google Scholar 

  63. Paris J. J., and Frye C. A. (2008) Estrous cycle, pregnancy, and parity enhance performance of rats in object recognition or object placement tasks. Reproduction. 136, 105–15.

    PubMed  CAS  CrossRef  Google Scholar 

  64. Walf A. A., Sumida K., and Frye C. A. (2006) Inhibiting 5alpha-reductase in the amygdala attenuates antianxiety and antidepressive behavior of naturally receptive and hormone-primed ovariectomized rats. Psychopharma­cology (Berl). 186, 302–11.

    CAS  CrossRef  Google Scholar 

  65. Bahrke M. S., Yesalis C. E., and Brower K. J. (1998) Anabolic-androgenic steroid abuse and performance-enhancing drugs among adolescents. Child Adolesc Psychiatr Clin N Am. 7, 821–38.

    PubMed  CAS  Google Scholar 

  66. Yesalis C. E., Barsukiewicz C. K., Kopstein A. N., and Bahrke M. S. (1997) Trends in anabolic-androgenic steroid use among adolescents. Arch Pediatr Adolesc Med 151, 1197–206.

    PubMed  CAS  CrossRef  Google Scholar 

  67. Svare B., Mann M., Broida J., Kinsley C., Ghiraldi L., Miele J., and Konen C. (1983) Intermale aggression and infanticide in aged C57BL/6J male mice: behavioral deficits are not related to serum testosterone (T) levels and are not recovered by supplemental T. Neurobiol Aging. 4, 305–12.

    PubMed  CAS  CrossRef  Google Scholar 

  68. Kinsley C., and Svare B. (1988) Prenatal stress alters maternal aggression in mice. Physiol Behav. 42, 7–13.

    PubMed  CAS  CrossRef  Google Scholar 

  69. Frye C. A., Van Keuren K. R., and Erskine M. S. (1996) Behavioral effects of 3 alpha-androstanediol. I: Modulation of sexual receptivity and promotion of GABA-stimulated chloride flux. Behav Brain Res. 79, 109–18.

    CAS  Google Scholar 

  70. Archer J. (1991) The influence of testosterone on human aggression. Br J Psychol. 82, 1–28.

    PubMed  CrossRef  Google Scholar 

  71. Meaney M. J., and McEwen B. S. (1986) Testosterone implants into the amygdala during the neonatal period masculinize the social play of juvenile female rats. Brain Res. 398, 324–8.

    PubMed  CAS  CrossRef  Google Scholar 

  72. Rhees R. W., Kirk B. A., Sephton S., and Lephart E. D. Effects of prenatal testosterone on sexual behavior, reproductive morphology and LH secretion in the female rat. Dev Neurosci. 19, 430–7

    Google Scholar 

  73. Su T. P., Pagliaro M., Schmidt P. J., Pickar D., Wolkowitz O., and Rubinow D. R. (1993) Neuropsychiatric effects of anabolic steroids in male normal volunteers. JAMA. 269, 2760–4.

    PubMed  CAS  CrossRef  Google Scholar 

  74. Choi P. Y., and Pope H. G. Jr. (1994) Violence toward women and illicit androgenic-anabolic steroid use. Ann Clin Psychiatry. 6, 21–5.

    PubMed  CAS  CrossRef  Google Scholar 

  75. Greenblatt R. B., and Karpas A. (1983) Hormone therapy for sexual dysfunction. The only “true aphrodisiac”. Postgrad Med. 74, 88–80, 84–9.

    Google Scholar 

  76. Bahrke M. S., Yesalis C. E. 3rd, and Wright J. E. (1990) Psychological and behavioural effects of endogenous testosterone levels and anabolic-androgenic steroids among males. Sports Med. 10, 303–37.

    PubMed  CAS  CrossRef  Google Scholar 

  77. Bahrke M. S., Yesalis C. E. 3rd, Wright J. E. (1996) Psychological and behavioural effects of endogenous testosterone and anabolic-androgenic steroids. An update. Sports Med. 22, 367–90.

    CAS  Google Scholar 

  78. Pope H. G. Jr, and Katz D. L. (1994) Psychiatric and medical effects of anabolic-androgenic steroid use. A controlled study of 160 athletes. Arch Gen Psychiatry. 51, 375–82.

    PubMed  CAS  CrossRef  Google Scholar 

  79. Moss H. B., Panzak G. L., and Tarter R. E. (1993) Sexual functioning of male anabolic steroid abusers. Arch Sex Behav. 22, 1–12.

    PubMed  CAS  CrossRef  Google Scholar 

  80. Miczek K. A., Haney M., Tidey J., Vatne T., Weerts E., and DeBold J. F. (1989) Temporal and sequential patterns of agonistic behavior: effects of alcohol, anxiolytics and psychomotor stimulants. Psychopharmacology (Berl). 97, 149–51.

    CAS  CrossRef  Google Scholar 

  81. Moyer K. E. (1968) Kinds of aggression and their physiological basis. Commun. Behav. Bio. 2, 65–87.

    Google Scholar 

  82. Edwards D. A. (1969). Early androgen stimulation and aggressive behavior in male and female mice. Physiology & Behavior, 4, 333–338.

    CrossRef  Google Scholar 

  83. Miczek K. A., DeBold J. F., and Thompson M. L. (1984) Pharmacological, hormonal, and behavioral manipulations in analysis of aggressive behavior. Prog Clin Biol Res 167, 1–26.

    PubMed  CAS  Google Scholar 

  84. Kubala K. H., McGinnis M. Y., Anderson G. M., and Lumia A. R. (2008) The effects of an anabolic androgenic steroid and low serotonin on social and non-social behaviors in male rats. Brain Res. 26, 21–9.

    CrossRef  CAS  Google Scholar 

  85. Albert D. J., Jonik R. H., and Walsh M. L. (1993) Influence of combined estradiol and testosterone implants on the aggressiveness of nonaggressive female rats. Physiol Behav. 53, 709–13.

    PubMed  CAS  CrossRef  Google Scholar 

  86. Rezek D. L., and Whalen R. E. Male rat brain androgen metabolism and sexual behavior. Neuroendocrinology. 25, 141–9.

    Google Scholar 

  87. Morali G., Oropeza M. V., Lemus A. E., and Perez-Palacios G. (1994) Mechanisms regulating male sexual behavior in the rat: role of 3 alpha- and 3 beta-androstanediols. Biol Reprod. 51, 562–71.

    PubMed  CAS  CrossRef  Google Scholar 

  88. Parrott R. F. (1974) The effects of various androgens on peripheral structures in the castrated male rat. J Reprod Fertil. 38, 49–57.

    PubMed  CAS  CrossRef  Google Scholar 

  89. Howland B. E. (1975) The influence of feed restriction and subsequent re-feeding on gonadotrophin secretion and serum testosterone levels in male rats. J Reprod Fertil. 44, 429–36

    PubMed  CAS  CrossRef  Google Scholar 

  90. Asarian L., and Geary N. Modulation of appetite by gonadal steroid hormones. Philos Trans R Soc Lond B Biol Sci. 361, 1251–63.

    Google Scholar 

  91. Allan C. A., and McLachlan R. I. (2010) Androgens and obesity. Curr Opin Endocrinol Diabetes Obes.17, 224–32.

    Google Scholar 

  92. Gentry R. T., and Wade G. N. (1976) Androgenic control of food intake and body weight in male rats. J Comp Physiol Psychol. 90, 18–25.

    PubMed  CAS  CrossRef  Google Scholar 

  93. Elias A. N., and Wilson A. F. (1993) Exercise and gonadal function. Hum Reprod. 8, 1747–61.

    CAS  Google Scholar 

  94. Campbell B. C., Dreber A., Apicella C. L., Eisenberg D. T., Gray P. B., Little A. C., Garcia J. R., Zamore R. S., and Lum J. K. (2010) Testosterone exposure, dopaminergic reward, and sensation-seeking in young men. Physiol Behav. 99, 451–6.

    PubMed  CAS  CrossRef  Google Scholar 

  95. Rosellini R. A., Svare B. B., Rhodes M. E., and Frye C. A. (2001) The testosterone metabolite and neurosteroid 3alpha-androstanediol may mediate the effects of testosterone on conditioned place preference. Brain Res Brain Res Rev. 37, 162–71.

    PubMed  CAS  CrossRef  Google Scholar 

  96. Frye C. A. (2007) Some rewarding effects of androgens may be mediated by actions of its 5alpha-reduced metabolite 3alpha-androstanediol. Pharmacol Biochem Behav. 86, 354–67.

    PubMed  CAS  CrossRef  Google Scholar 

  97. Fuxjager M. J., Forbes-Lorman R. M., Coss D. J., Auger C. J., Auger A. P., and Marler C. A. (2010) Winning territorial disputes selectively enhances androgen sensitivity in neural pathways related to motivation and social aggression. Proc Natl Acad Sci U S A. 107, 12393–8.

    PubMed  CAS  CrossRef  Google Scholar 

  98. Robinson D. L., Phillips P. E., Budygin E. A., Trafton B. J., Garris P. A., and Wightman R. M. (2001) Sub-second changes in accumbal dopamine during sexual behavior in male rats. Neuroreport. 12, 49–52.

    CrossRef  Google Scholar 

  99. Robinson T. E., Gorny G., Mitton E., and Kolb B. (2001) Cocaine self-administration alters the morphology of dendrites and dendritic spines in the nucleus accumbens and neocortex. Synapse. 39, 257–66.

    PubMed  CAS  CrossRef  Google Scholar 

  100. Wood R. I. (2004) Reinforcing aspects of androgens. Physiol Behav. 83, 279–89.

    PubMed  CAS  Google Scholar 

  101. Triemstra J. L., Sato S. M., Wood R. I. (2008) Testosterone and nucleus accumbens dopamine in the male Syrian hamster. Psychoneuroendocrinology. 33, 386–94.

    PubMed  CAS  CrossRef  Google Scholar 

  102. Kashkin K. B., and Kleber H. D. (1989) Hooked on hormones? An anabolic steroid addiction hypothesis. JAMA. 262, 3166–70.

    PubMed  CAS  CrossRef  Google Scholar 

  103. Wright J. E. (1980) Anabolic steroids and athletics. Exerc Sport Sci Rev. 8, 149–202.

    PubMed  CAS  CrossRef  Google Scholar 

  104. Bonson K. R., Johnson R. G., Fiorella D., Rabin R. A., Winter J. C. (1994) Serotonergic control of androgen-induced dominance. Pharmacol Biochem Behav. 49, 313–22.

    PubMed  CAS  CrossRef  Google Scholar 

  105. Russo S. J., Sun W. L., Minerley A. C., Weierstall K., Nazarian A., Festa E. D., Niyomchai T., Akhavan A., Jenab S., and Quiñones-Jenab V. (2010) Progesterone does not affect cocaine-induced conditioned place preference or locomotor activity in male rats. Ethn Dis. 20, 73–7.

    Google Scholar 

  106. Kohtz A. S., Paris J. J., and Frye C. A. (2010) Low doses of cocaine decrease, and high doses increase, anxiety-like behavior and brain progestogen levels among intact rats. Horm Behav. 57, 474–80.

    PubMed  CAS  CrossRef  Google Scholar 

  107. Takahashi A., Kwa C., Debold J. F., and Miczek K. A. (2010) GABA(A) receptors in the dorsal raphé nucleus of mice: escalation of aggression after alcohol consumption. Psychopharmacology (Berl). 211, 467–77.

    CAS  CrossRef  Google Scholar 

  108. de Almeida R. M., Ferrari P. F., Parmigiani S., and Miczek K. A. (2005) Escalated aggressive behavior: dopamine, serotonin and GABA. Eur J Pharmacol. 526, 51–64.

    PubMed  CrossRef  CAS  Google Scholar 

  109. Haupt H. A., and Rovere G. D. (1984) Anabolic steroids: a review of the literature. Am J Sports Med. 12, 469–84.

    PubMed  CAS  CrossRef  Google Scholar 

  110. Grokett B. H., Ahmad N., and Warren D. W. (1992) The effects of an anabolic steroid (oxandrolone) on reproductive development in the male rat. Acta Endocrinol (Copenh). 126, 173–8.

    CAS  Google Scholar 

  111. Helfman T., and Falanga V. (1995) Stanozolol as a novel therapeutic agent in dermatology. J Am Acad Dermatol. 33, 254–8.

    PubMed  CAS  CrossRef  Google Scholar 

  112. Hansell D. T., Davies J. W., Shenkin A., Garden O. J., Burns H. J., and Carter D. C. (1989) The effects of an anabolic steroid and peripherally administered intravenous nutrition in the early postoperative period. JPEN J Parenter Enteral Nutr. 13, 349–58.

    PubMed  CAS  CrossRef  Google Scholar 

  113. Johnson L. C., and O’Shea J. P. (1969) Anabolic steroid: effects on strength development. Science. 164, 957–9.

    PubMed  CAS  CrossRef  Google Scholar 

  114. Earnest C. P., Olson M. A., Broeder C. E., Breuel K. F., and Beckham S. G. (2000) In vivo 4-androstene-3,17-dione and 4-androstene-3 beta,17 beta-diol supplementation in young men. Eur J Appl Physiol. 81, 229–32.

    PubMed  CAS  CrossRef  Google Scholar 

  115. Brown G. A., Vukovich M., and King D. S. (2006) Testosterone prohormone supplements. Med Sci Sports Exerc. 38, 1451–61.

    PubMed  CAS  CrossRef  Google Scholar 

  116. Jasuja R., Ramaraj P., Mac R. P., Singh A. B., Storer T. W., Artaza J., Miller A., Singh R., Taylor W. E., Lee M. L., Davidson T., Sinha-Hikim I., Gonzalez-Cadavid N., and Bhasin S. (2005) Delta-4-androstene-3,17-dione binds androgen receptor, promotes myogenesis in vitro, and increases serum testosterone levels, fat-free mass, and muscle strength in hypogonadal men. J Clin Endocrinol Metab. 90, 855–63.

    PubMed  CAS  CrossRef  Google Scholar 

  117. Yue P., Chatterjee K., Beale C., Poole-Wilson P. A., and Collins P. (1995) Testosterone relaxes rabbit coronary arteries and aorta. Circulation. 91, 1154–60.

    PubMed  CAS  Google Scholar 

  118. Costarella C. E., Stallone J. N., Rutecki G. W., and Whittier F. C. (1996) Testosterone causes direct relaxation of rat thoracic aorta. J Pharmacol Exp Ther. 277, 34–9.

    PubMed  CAS  Google Scholar 

  119. Chou T. M., Sudhir K., Hutchison S. J., Ko E., Amidon T. M., Collins P., and Chatterjee K. (1996) Testosterone induced dilation of canine coronary conductance and resistance arteries in vivo. Circulation. 94, 2614–2619.

    Google Scholar 

  120. Schrör K., Morinelli T. A., Masuda A., Matsuda K., Mathur R. S., and Halushka P. V. (1994) Testosterone treatment enhances thromboxane A2 mimetic induced coronary artery vasoconstriction in guinea pigs. Eur J Clin Invest. 1, 50–2.

    Google Scholar 

  121. Hydock D. S., Lien C. Y., Schneider C. M., and Hayward R. (2007) Effects of voluntary wheel running on cardiac function and myosin heavy chain in chemically gonadectomized rats. Am J Physiol Heart Circ Physiol. 293, 3254–64.

    CrossRef  CAS  Google Scholar 

  122. Hassan N. A., Salem M. F., and Sayed M. A. (2009) Doping and effects of anabolic androgenic steroids on the heart: histological, ultrastructural, and echocardiographic assessment in strength athletes. Hum Exp Toxicol. 28, 273–83.

    PubMed  CAS  CrossRef  Google Scholar 

  123. Goldstein D. R., Dobbs T., Krull B., and Plumb V. J. (1998) Clenbuterol and anabolic steroids: a previously unreported cause of myocardial infarction with normal coronary arteriograms. South Med J. 91, 780–4.

    PubMed  CAS  CrossRef  Google Scholar 

  124. Nestler J. E., Barlascini C. O., Clore J. N., and Blackard W. G. (1988) Dehydroepiandrosterone reduces serum low density lipoprotein levels and body fat but does not alter insulin sensitivity in normal men. J Clin Endocrinol Metab. 66, 57–61.

    PubMed  CAS  CrossRef  Google Scholar 

  125. Fowler N. O., McCall D., Chou T. C., Holmes J. C., and Hanenson I. B. (2004) Electrocardiographic changes and cardiac arrhythmias in patients receiving psychotropic drugs. Am J Cardiol. 37, 223–30.

    CrossRef  Google Scholar 

  126. Du J., Zhang L., and Wang Z. (2009) Testosterone inhibits the activity of peroxisome proliferator-activated receptor gamma in a transcriptional transaction assay. Pharmazie. 64, 692–3.

    PubMed  CAS  Google Scholar 

  127. Hansmann G., and Zamanian R. T. (2009) PPARgamma activation: a potential treatment for pulmonary hypertension. Sci Transl Med. 1, 12–14.

    CrossRef  CAS  Google Scholar 

  128. Fruchart J. C., Duriez P., and Staels B. (1999) Peroxisome proliferator-activated receptor-alpha activators regulate genes governing lipoprotein metabolism, vascular inflammation and atherosclerosis. Curr Opin Lipidol. 10, 245–57.

    Google Scholar 

  129. Buchan K. W., and Hassall D. G. (2000) PPAR agonists as direct modulators of the vessel wall in cardiovascular disease. Med Res Rev. 20, 350–66.

    PubMed  CAS  CrossRef  Google Scholar 

  130. Ketsawatsomkron P., Pelham C. J., Groh S., Keen H. L., Faraci F. M., and Sigmund C. D. (2010) Does peroxisome proliferator-activated receptor-gamma (PPAR gamma) protect from hypertension directly through effects in the vasculature? J Biol Chem. 285, 9311–6.

    PubMed  CAS  CrossRef  Google Scholar 

  131. Wu J. S., Lin T. N., and Wu K. K. (2009) Rosiglitazone and PPAR-gamma overexpression protect mitochondrial membrane potential and prevent apoptosis by upregulating anti-apoptotic Bcl-2 family proteins. J Cell Physiol. 220, 58–71.

    PubMed  CAS  CrossRef  Google Scholar 

  132. Wu J., Chen L., Zhang D., Huo M., Zhang X., Pu D., and Guan Y. (2009) Peroxisome proliferator-activated receptors and renal diseases. Front Biosci. 14, 995–1009.

    PubMed  CAS  CrossRef  Google Scholar 

  133. Wu J. S., Cheung W. M., Tsai Y. S., Chen Y. T., Fong W. H., Tsai H. D., Chen Y. C., Liou J. Y., Shyue S. K., Chen J. J., Chen Y. E., Maeda N., Wu K. K., and Lin T. N. (2009) Ligand-activated peroxisome proliferator-activated receptor-gamma protects against ischemic cerebral infarction and neuronal apoptosis by 14-3-3 epsilon upregulation. Circulation. 119, 1124–34.

    PubMed  CAS  CrossRef  Google Scholar 

  134. Minutoli L., Antonuccio P., Polito F., Bitto A., Squadrito F., Irrera N., Nicotina P. A., Fazzari C., Montalto A. S., Di Stefano V., Romeo C., Altavilla D. (2009) Peroxisome proliferator activated receptor beta/delta activation prevents extracellular regulated kinase 1/2 phosphorylation and protects the testis from ischemia and reperfusion injury. J Urol. 181, 1913–21.

    PubMed  CAS  CrossRef  Google Scholar 

  135. Jones R. D., Pugh P. J., Hall J., Channer K. S., and Jones T. H. (2003) Altered circulating hormone levels, endothelial function and vascular reactivity in the testicular feminised mouse. Eur J Endocrinol. 148, 111–20.

    PubMed  CAS  CrossRef  Google Scholar 

  136. Dimicco J. A., and Zaretsky D. V. (2007) The dorsomedial hypothalamus: a new player in thermoregulation. Am J Physiol Regul Integr Comp Physiol. 292, R47–63.

    PubMed  CAS  CrossRef  Google Scholar 

  137. Shekhar A., Johnson P. L., Sajdyk T. J., Fitz S. D., Keim S. R., Kelley P. E., Gehlert D. R., and DiMicco J. A. (2006) Angiotensin-II is a putative neurotransmitter in lactate-induced panic-like responses in rats with disruption of GABAergic inhibition in the dorsomedial hypothalamus. J Neurosci. 26, 9205–15.

    PubMed  CAS  CrossRef  Google Scholar 

  138. Traish A. M., Feeley R. J., and Guay A. (2009) Mechanisms of obesity and related pathologies: androgen deficiency and endothelial dysfunction may be the link between obesity and erectile dysfunction. FEBS J. 276, 5755–67.

    PubMed  CAS  CrossRef  Google Scholar 

  139. Traish A. M., Saad F., and Guay A. (2009) The dark side of testosterone deficiency: II. Type 2 diabetes and insulin resistance. J Androl. 30, 23–32.

    PubMed  CAS  CrossRef  Google Scholar 

  140. Traish A. M., Guay A., Feeley R., and Saad F. (2009) The dark side of testosterone deficiency: I. Metabolic syndrome and erectile dysfunction. J Androl. 30, 10–22.

    CAS  Google Scholar 

  141. Claessens F., Denayer S., Van Tilborgh N., Kerkhofs S., Helsen C., and Haelens A. (2008) Diverse roles of androgen receptor (AR) domains in AR-mediated signaling. Nucl Recept Signal. 6, 008.

    Google Scholar 

  142. Shaknovich R., Shue G., and Kohtz D. S. (1992) Conformational activation of a basic helix-loop-helix protein (MyoD1) by the C-terminal region of murine HSP90 (HSP84). Mol Cell Biol. 12, 5059–68.

    PubMed  CAS  Google Scholar 

  143. Zoubeidi A., Zardan A., Beraldi E., Fazli L., Sowery R., Rennie P., Nelson C., and Gleave M. (2007) Cooperative interactions between androgen receptor (AR) and heat-shock protein 27 facilitate AR transcriptional activity. Cancer Res. 67, 10455–65.

    PubMed  CAS  CrossRef  Google Scholar 

  144. Shaffer P. L., Jivan A., Dollins D. E., Claessens F., and Gewirth D. T. (2004) Structural basis of androgen receptor binding to selective androgen response elements. Proc Natl Acad Sci U S A. 101, 4758–63.

    PubMed  CAS  CrossRef  Google Scholar 

  145. Knudsen K. E., Cavenee W. K., and Arden K. C. (1999) D-type cyclins complex with the androgen receptor and inhibit its transcriptional transactivation ability. Cancer Res. 59, 2297–301.

    PubMed  CAS  Google Scholar 

  146. Petre-Draviam C. E., Cook S. L., Burd C. J., Marshall T. W., Wetherill Y. B., and Knudsen K. E. (2003) Specificity of cyclin D1 for androgen receptor regulation. Cancer Res. 63, 4903–13.

    PubMed  CAS  Google Scholar 

  147. Urbanucci A., Waltering K. K., Suikki H. E., Helenius M. A., and Visakorpi T. (2008) Androgen regulation of the androgen receptor coregulators. BMC Cancer. 8, 219.

    PubMed  CrossRef  CAS  Google Scholar 

  148. Karvonen U., Jänne O. A., and Palvimo J. J. (2006) Androgen receptor regulates nuclear trafficking and nuclear domain residency of corepressor HDAC7 in a ligand-dependent fashion. Exp Cell Res. 312, 3165–83.

    PubMed  CAS  CrossRef  Google Scholar 

  149. Björkman M., Iljin K., Halonen P., Sara H., Kaivanto E., Nees M., and Kallioniemi O. P. (2008) Defining the molecular action of HDAC inhibitors and synergism with androgen deprivation in ERG-positive prostate cancer. Int J Cancer. 123, 2774–81.

    PubMed  CrossRef  CAS  Google Scholar 

  150. Welsbie D. S., Xu J., Chen Y., Borsu L., Scher H. I., Rosen N., and Sawyers C. L. (2009) Histone deacetylases are required for androgen receptor function in hormone-sensitive and castrate-resistant prostate cancer. Cancer Res. 69, 958–66.

    PubMed  CAS  CrossRef  Google Scholar 

  151. Baulieu E. E., Atger M., Best-Belpomme M., Corvol P., Courvalin J. C., Mester J., Milgrom E., Robel P., Rochefort H., and De Catalogne D. (1975) Steroid hormone receptors. Vitam Horm. 33, 649–736.

    CAS  Google Scholar 

  152. Sato S. M., Johansen J. A., Jordan C. L., and Wood R. I. (2010) Membrane androgen receptors may mediate androgen reinforcement. Psychoneuroendocrinology. 35, 1063–73.

    PubMed  CAS  CrossRef  Google Scholar 

  153. Farnsworth W. E. (1990) The prostate plasma membrane as an androgen receptor. Membr Biochem. 9, 141–62.

    PubMed  CAS  CrossRef  Google Scholar 

  154. Bottino M. C., and Lanari C. (2010) Extra nuclear localization of steroid receptors and non genomic activation mechanisms. Medicina (B Aires). 70, 173–84.

    CAS  Google Scholar 

  155. MacLusky N. J., Clark C. R., Shanabrough M., and Naftolin F. (1987) Metabolism and binding of androgens in the spinal cord of the rat. Brain Res. 422, 83–91.

    PubMed  CAS  CrossRef  Google Scholar 

  156. García-Ovejero D., Veiga S., García-Segura L. M., and Doncarlos L. L. (2002) Glial expression of estrogen and androgen receptors after rat brain injury. J Comp Neurol. 450, 256–71.

    PubMed  CrossRef  CAS  Google Scholar 

  157. DonCarlos L. L., Sarkey S., Lorenz B., Azcoitia I., Garcia-Ovejero D., Huppenbauer C., and Garcia-Segura L. M. (2006) Novel cellular phenotypes and subcellular sites for androgen action in the forebrain. Neuroscience. 138, 801–7.

    PubMed  CAS  CrossRef  Google Scholar 

  158. DonCarlos L. L., Garcia-Ovejero D., Sarkey S., Garcia-Segura L. M., and Azcoitia I. (2003) Androgen receptor immunoreactivity in forebrain axons and dendrites in the rat. Endocrinology. 144, 3632–8.

    PubMed  CAS  CrossRef  Google Scholar 

  159. Jänne O. A., Palvimo J. J., Kallio P., and Mehto M. (1993) Androgen receptor and mechanism of androgen action. Ann Med. 25, 83–9.

    PubMed  CrossRef  Google Scholar 

  160. Doherty P. C., and Sheridan P. J. (1981) Uptake and retention of androgen in neurons of the brain of the golden hamster. Brain Res. 219, 327–34.

    PubMed  CAS  CrossRef  Google Scholar 

  161. Sar M., and Stumpf W. E. (1972) Cellular localization of androgen in the brain and pituitary after the injection of tritiated testosterone. Experientia. 28, 1364–6.

    PubMed  CAS  CrossRef  Google Scholar 

  162. Sar M., and Stumpf W. E. (1973) Autoradiographic localization of radioactivity in the rat brain after the injection of 1,2-3 H-testosterone. Endocrinology. 92, 251–6.

    PubMed  CAS  CrossRef  Google Scholar 

  163. Sar M., and Stumpf W. E. (1981) Combined autoradiography and immunohistochemistry for simultaneous localization of radioactively labeled steroid hormones and antibodies in the brain. J Histochem Cytochem. 29, 161–6.

    PubMed  CAS  CrossRef  Google Scholar 

  164. Kritzer M. F. (1997) Selective colocalization of immunoreactivity for intracellular gonadal hormone receptors and tyrosine hydroxylase in the ventral tegmental area, substantia nigra, and retrorubral fields in the rat. J Comp Neurol. 379, 247–60.

    PubMed  CAS  CrossRef  Google Scholar 

  165. Lieberburg I., Maclusky N. J., and McEwen B. S. (1977) 5alpha-Dihydrotestosterone (DHT) receptors in rat brain and pituitary cell nuclei. Endocrinology. 100, 598–607.

    PubMed  CAS  CrossRef  Google Scholar 

  166. Hajszan T., MacLusky N. J., and Leranth C. (2008) Role of androgens and the androgen receptor in remodeling of spine synapses in limbic brain areas. Horm Behav. 53, 638–46.

    PubMed  CAS  CrossRef  Google Scholar 

  167. Clark R. L., Antonello J. M., Grossman S. J., Wise L. D., Anderson C., Bagdon W. J., Prahalada S., MacDonald J. S., and Robertson R. T. (1990) External genitalia abnormalities in male rats exposed in utero to finasteride, a 5 alpha-reductase inhibitor. Teratology. 42, 91–100.

    PubMed  CAS  CrossRef  Google Scholar 

  168. di Salle E., Giudici D., Briatico G., Ornati G., and Panzeri A. (1993) Hormonal effects of turosteride, a 5 alpha-reductase inhibitor, in the rat. J Steroid Biochem Mol Biol. 46, 549–55.

    PubMed  CrossRef  Google Scholar 

  169. Reismann P., Likó I., Igaz P., Patócs A., and Rácz K. (2009) Pharmacological options for treatment of hyperandrogenic disorders. Mini Rev Med Chem. 9, 1113–26.

    PubMed  CAS  CrossRef  Google Scholar 

  170. Garcia Valencia V., Sanchez M., Gutierrez M., Cantabrana B., and Hidalgo A. (1991) Effects of steroidal and non-steroidal antiandrogens on the left atrium of the rat in vitro. Gen Pharmacol. 22, 1081–6.

    CrossRef  Google Scholar 

  171. Imperato-McGinley J., Sanchez R. S., Spencer J. R., Yee B., and Vaughan E. D. (1992) Comparison of the effects of the 5 alpha-reductase inhibitor finasteride and the antiandrogen flutamide on prostate and genital differentiation: dose-response studies. Endocrinology. 131, 1149–56.

    PubMed  CAS  CrossRef  Google Scholar 

  172. Raudrant D., and Rabe T. (2003) Progestogens with antiandrogenic properties. Drugs. 63, 463–92.

    PubMed  CAS  CrossRef  Google Scholar 

  173. Azuma K., Nakashiro K., Sasaki T., Goda H., Onodera J., Tanji N., Yokoyama M., and Hamakawa H. (2010) Anti-tumor effect of small interfering RNA targeting the androgen receptor in human androgen-independent prostate cancer cells. Biochem Biophys Res Commun. 391, 1075–9.

    PubMed  CAS  CrossRef  Google Scholar 

  174. Fimmel S., Kurfurst R., Bonté F., and Zouboulis C. C. (2007) Responsiveness to androgens and effectiveness of antisense oligonucleotides against the androgen receptor on human epidermal keratinocytes is dependent on the age of the donor and the location of cell origin. Horm Metab Res. 39, 157–65.

    PubMed  CAS  CrossRef  Google Scholar 

  175. Yeh S., Tsai M. Y., Xu Q., Mu X. M., Lardy H., Huang K. E., Lin H., Yeh S. D., Altuwaijri S., Zhou X., Xing L., Boyce B. F., Hung M. C., Zhang S., Gan L., and Chang C. (2002) Generation and characterization of androgen receptor knockout (ARKO) mice: an in vivo model for the study of androgen functions in selective tissues. Proc Natl Acad Sci U S A. 99, 13498–503.

    PubMed  CAS  CrossRef  Google Scholar 

  176. Zhou X. (2010) Roles of androgen receptor in male and female reproduction: lessons from global and cell-specific androgen receptor knockout (ARKO) mice. J Androl. 31, 235–43.

    PubMed  CrossRef  Google Scholar 

  177. Handa R. J., Pak T. R., Kudwa A. E., Lund T. D., and Hinds L. (2008) An alternate pathway for androgen regulation of brain function: activation of estrogen receptor beta by the metabolite of dihydrotestosterone, 5alpha-androstane-3beta,17beta-diol. Horm Behav. 53, 741–52.

    PubMed  CAS  CrossRef  Google Scholar 

  178. Alejandre-Gomez M., Garcia-Segura L. M., and Gonzalez-Burgos I. (2007) Administration of an inhibitor of estrogen biosynthesis facilitates working memory acquisition in male rats. Neurosci Res. 58, 272–7.

    PubMed  CAS  CrossRef  Google Scholar 

  179. Ellem S. J., and Risbridger G. P. (2010) Aromatase and regulating the estrogen:androgen ratio in the prostate gland. J Steroid Biochem Mol Biol. 118, 246–51.

    PubMed  CAS  CrossRef  Google Scholar 

  180. Lephart E. D., Lund T. D., and Horvath T. L. (2001) Brain androgen and progesterone metabolizing enzymes: biosynthesis, distribution and function. Brain Res Brain Res Rev. 37, 25–37.

    PubMed  CAS  CrossRef  Google Scholar 

  181. Séralini G., and Moslemi S. (2001) Aromatase inhibitors: past, present and future. Mol Cell Endocrinol. 178, 117–31.

    PubMed  CrossRef  Google Scholar 

  182. Reddy D. S., and Jian K. (2010) The testosterone-derived neurosteroid androstanediol is a positive allosteric modulator of GABAA receptors. J Pharmacol Exp Ther. 334, 1031–41.

    PubMed  CAS  CrossRef  Google Scholar 

  183. Pak T. R., Chung W. C., Lund T. D., Hinds L. R., Clay C. M., and Handa R. J. (2005) The androgen metabolite, 5alpha-androstane-3beta, 17beta-diol, is a potent modulator of estrogen receptor-beta1-mediated gene transcription in neuronal cells. Endocrinology. 146, 147–55.

    PubMed  CAS  CrossRef  Google Scholar 

  184. Alderson L. M., and Baum M. J. (1981) Differential effects of gonadal steroids on dopamine metabolism in mesolimbic and nigro-striatal pathways of male rat brain. Brain Res. 218, 189–206.

    PubMed  CAS  CrossRef  Google Scholar 

  185. Goudsmit E., Feenstra M. G., and Swaab D. F. (1990) Central monoamine metabolism in the male Brown-Norway rat in relation to aging and testosterone. Brain Res Bull. 25, 755–63.

    PubMed  CAS  CrossRef  Google Scholar 

  186. Jalilian-Tehrani M. H., Karakiulakis G., Le Blond C. B., Powell R., and Thomas P. J. (1982) Androgen-induced sexual dimorphism in high affinity dopamine binding in the brain transcends the hypothalamic-limbic region. Br J Pharmacol. 75, 37–48.

    PubMed  CAS  Google Scholar 

  187. Mitchell J. B., and Stewart J. (1989) Effects of castration, steroid replacement, and sexual experience on mesolimbic dopamine and sexual behaviors in the male rat. Brain Res. 491, 116–27.

    PubMed  CAS  CrossRef  Google Scholar 

  188. Moore W. V. (1988) Anabolic steroid use in adolescence. JAMA. 260, 3484–6.

    PubMed  CAS  CrossRef  Google Scholar 

  189. Cunningham G. R., Tindall D. J., and Means A. R. (1979) Differences in steroid specificity for rat androgen binding protein and the cytoplasmic receptor. Steroids. 33, 261–76.

    PubMed  CAS  CrossRef  Google Scholar 

  190. Verhoeven G., Heyns W., and De Moor P. (1975) Testosterone receptors in the prostate and other tissues. Vitam Horm. 33, 265–81.

    PubMed  CAS  CrossRef  Google Scholar 

  191. DiMeo A. N., and Wood R. I. (2006) Self-administration of estrogen and dihydrotestosterone in male hamsters. Horm Behav. 49, 519–26.

    PubMed  CAS  CrossRef  Google Scholar 

  192. Sheridan P. J. (1984) Autoradiographic localization of steroid receptors in the brain. Clin Neuropharmacol. 7, 281–95.

    PubMed  CAS  CrossRef  Google Scholar 

  193. Sato S. M., Johansen J. A., Jordan C. L., and Wood R. I. (2010) Membrane androgen receptors may mediate androgen reinforcement. Psychoneuroendocrinology. 35, 1063–73.

    PubMed  CAS  CrossRef  Google Scholar 

  194. Erskine M. S. (1983) Effects of an anti-androgen and 5 alpha-reductase inhibitors on estrus duration in the cycling female rat. Physiol Behav. 30(4), 519–24.

    PubMed  CAS  CrossRef  Google Scholar 

  195. Majewska M. D., Harrison N. L., Schwartz R. D., Barker J. L., and Paul S. M. (1986) Steroid hormone metabolites are barbiturate-like modulators of the GABA receptor. Science. 232, 1004–7.

    PubMed  CAS  CrossRef  Google Scholar 

  196. Im W. B., Blakeman D. P., Davis J. P., and Ayer D. E. (1990) Studies on the mechanism of interactions between anesthetic steroids and gamma-aminobutyric acidA receptors. Mol Pharmacol. 37, 429–34.

    PubMed  CAS  Google Scholar 

  197. Masonis A. E., and McCarthy M. P. (1995) Direct effects of the anabolic/androgenic steroids, stanozolol and 17 alpha-methyltestosterone, on benzodiazepine binding to the gamma-aminobutyric acid(a) receptor. Neurosci Lett. 189, 35–8.

    PubMed  CAS  CrossRef  Google Scholar 

  198. Gee K. W. (1988) Steroid modulation of the GABA/benzodiazepine receptor-linked chloride ionophore. Mol Neurobiol. 2, 291–317.

    PubMed  CAS  CrossRef  Google Scholar 

  199. Penatti C. A., Davis M. C., Porter D. M., and Henderson L. P. (2010) Altered GABAA receptor-mediated synaptic transmission disrupts the firing of gonadotropin-releasing hormone neurons in male mice under conditions that mimic steroid abuse. J Neurosci. 30, 6497–506.

    PubMed  CAS  CrossRef  Google Scholar 

  200. Clark A. S., Costine B. A., Jones B. L., Kelton-Rehkopf M. C., Meerts S. H., Nutbrown-Greene L. L., Penatti C. A., Porter D. M., Yang P., and Henderson L. P. (2006) Sex- and age-specific effects of anabolic androgenic steroids on reproductive behaviors and on GABAergic transmission in neuroendocrine control regions. Brain Res. 1126, 122–38.

    PubMed  CAS  CrossRef  Google Scholar 

  201. Carroll M. E., Lynch W. J., Roth M. E., Morgan A. D., and Cosgrove K. P. (2004) Sex and estrogen influence drug abuse. Trends Pharmacol Sci. 25, 273–9.

    PubMed  CAS  CrossRef  Google Scholar 

  202. Kuiper G. G., Lemmen J. G., Carlsson B., Corton J. C., Safe S. H., van der Saag P. T., van der Burg B., and Gustafsson J. A. (1998) Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology. 139, 4252–63.

    PubMed  CAS  CrossRef  Google Scholar 

  203. Tremblay G. B., Tremblay A., Copeland N. G., Gilbert D. J., Jenkins N. A., Labrie F., and Giguère V. (1997) Cloning, chromosomal localization, and functional analysis of the murine estrogen receptor beta. Mol Endocrinol. 11, 353–65.

    PubMed  CAS  CrossRef  Google Scholar 

  204. Basu A., and Rowan B. G. (2005) Genes related to estrogen action in reproduction and breast cancer. Front Biosci. 10, 2346–72.

    PubMed  CAS  CrossRef  Google Scholar 

  205. Connor E. E., Wood D. L., Sonstegard T. S., da Mota A. F., Bennett G. L., Williams J. L., and Capuco A. V. (2005) Chromosomal mapping and quantitative analysis of estrogen-related receptor alpha-1, estrogen receptors alpha and beta and progesterone receptor in the bovine mammary gland. J Endocrinol. 185, 593–603.

    PubMed  CAS  CrossRef  Google Scholar 

  206. Hewitt S. C., and Korach K. S. (2003) Oestrogen receptor knockout mice: roles for oestrogen receptors alpha and beta in reproductive tissues. Reproduction. 125, 143–9.

    PubMed  CAS  CrossRef  Google Scholar 

  207. Shimizu T., Kamegai J., Tamura H., Ishii S., Sugihara H., and Oikawa S. (2005) The estrogen receptor (ER) alpha, but not ER beta, gene is expressed in hypothalamic growth hormone-releasing hormone neurons of the adult female rat. Neurosci Res. 52, 121–5.

    PubMed  CAS  CrossRef  Google Scholar 

  208. Walf A. A., Rhodes M. E., and Frye C. A. (2004) Antidepressant effects of ERbeta-selective estrogen receptor modulators in the forced swim test. Pharmacol Biochem Behav. 78, 523–9.

    PubMed  CAS  CrossRef  Google Scholar 

  209. Rissman E. F., Heck A. L., Leonard J. E., Shupnik M. A., and Gustafsson J. A. (2002) Disruption of estrogen receptor beta gene impairs spatial learning in female mice. Proc Natl Acad Sci U S A. 99, 3996–4001.

    PubMed  CAS  CrossRef  Google Scholar 

  210. Walf A. A., Ciriza I., Garcia-Segura L. M., and Frye C. A. (2008) Antisense oligodeoxynucleotides for estrogen receptor-beta and alpha attenuate estradiol’s modulation of affective and sexual behavior, respectively. Neuropsychopharmacology. 33, 431–40.

    PubMed  CAS  CrossRef  Google Scholar 

  211. Graham-Lorence S., Amarneh B., White R. E., Peterson J. A., and Simpson E. R. (1995) A three-dimensional model of aromatase cytochrome P450. Protein Sci. 4, 1065–80.

    PubMed  CAS  CrossRef  Google Scholar 

  212. Küppers E. and Beyer C. (1998) Expression of aromatase in the embryonic and postnatal mouse striatum. Brain Res Mol Brain Res. 63, 184–8.

    PubMed  CrossRef  Google Scholar 

  213. Connolly P. B., Roselli C. E., and Resko J. A. (1990) Aromatase activity in adult guinea pig brain is androgen dependent. Biol Reprod. 43, 698–703.

    PubMed  CAS  CrossRef  Google Scholar 

  214. McEwen B. S. (1980) Gonadal steroids: humoral modulators of nerve-cell function. Mol Cell Endocrinol. 18, 151–64.

    PubMed  CAS  CrossRef  Google Scholar 

  215. Jänne O. A. (1990) Androgen interaction through multiple steroid receptors. NIDA Res Monogr. 102, 178–86.

    PubMed  Google Scholar 

  216. Reel J. R., Humphrey R. R., Shih Y. H., Windsor B. L., Sakowski R., Creger P. L., and Edgren R. A. (1979) Competitive progesterone antagonists: receptor binding and biologic activity of testosterone and 19-nortestosterone derivatives. Fertil Steril. 31, 552–61.

    PubMed  CAS  Google Scholar 

  217. Ip M. M., Milholland R. J., Kim U., and Rosen F. (1982) Androgen control of cytosol progesterone receptor levels in the MT-W9B transplantable mammary tumor in the rat. J Natl Cancer Inst. 69, 673–81.

    PubMed  CAS  Google Scholar 

  218. Markiewicz L., and Gurpide E. (1997) Estrogenic and progestagenic activities of physiologic and synthetic androgens, as measured by in vitro bioassays. Methods Find Exp Clin Pharmacol. 19, 215–22.

    PubMed  CAS  Google Scholar 

  219. González-Montelongo M. C., Marín R., and Gómez T, Díaz M. (2010) Androgens are powerful non-genomic inducers of calcium sensitization in visceral smooth muscle. Steroids. 75, 533–8.

    Google Scholar 

  220. Patrão M. T., Silva E. J., and Avellar M. C. (2009) Androgens and the male reproductive tract: an overview of classical roles and current perspectives. Arq Bras Endocrinol Metabol. 53, 934–45.

    PubMed  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheryl A. Frye .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kohtz, A.S., Frye, C.A. (2012). Dissociating Behavioral, Autonomic, and Neuroendocrine Effects of Androgen Steroids in Animal Models. In: Kobeissy, F. (eds) Psychiatric Disorders. Methods in Molecular Biology, vol 829. Springer, New York, NY. https://doi.org/10.1007/978-1-61779-458-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-458-2_26

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-61779-457-5

  • Online ISBN: 978-1-61779-458-2

  • eBook Packages: Springer Protocols