Skip to main content

MALDI Imaging Technology Application in Neurosciences: From History to Perspectives

  • Protocol
  • First Online:
Expression Profiling in Neuroscience

Part of the book series: Neuromethods ((NM,volume 64))

Abstract

Dynamic properties of the nervous system can now be investigated through mass spectrometry technologies. Generally, the application of these powerful techniques requires the destruction of the specimen under study/examination, but recent technological advances have made it possible to directly analyze tissue sections and perform 2-D or 3-D molecular ions mapping. We review from history to perspective matrix-assisted laser desorption/ionization (MALDI) imaging technology and its application to the analysis of molecular distributions of proteins and peptides in nervous tissues of both invertebrates and vertebrates, focusing in particular on recent studies of neurodegenerative diseases, and early efforts to implement assays of neuronal development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jimenez, C. R., van Veelen, P. A., Li, K. W., Wildering, W. C., Geraerts, W. P., Tjaden, U. R., and van der Greef, J. (1994) Neuropeptide expression and processing as revealed by direct matrix-assisted laser desorption ionization mass spectrometry of single neurons, J Neurochem 62, 404–407.

    Article  PubMed  CAS  Google Scholar 

  2. Verbueken, A. H., Bruynseels, F. J., and Van Grieken, R. E. (1985) Laser microprobe mass analysis: a review of applications in the life sciences, Biomed Mass Spectrom 12, 438–463.

    Article  PubMed  CAS  Google Scholar 

  3. Castaing, R. a. S., G. (1962) Microanalyse par emission ioinque secondaire, Microscopie 1, 395–410.

    Google Scholar 

  4. Caprioli, R. M., Farmer, T. B., and Gile, J. (1997) Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS, Anal Chem 69, 4751–4760.

    Article  PubMed  CAS  Google Scholar 

  5. Chaurand, P., Stoeckli, M., and Caprioli, R. M. (1999) Direct profiling of proteins in biological tissue sections by MALDI mass spectrometry, Anal Chem 71, 5263–5270.

    Article  PubMed  CAS  Google Scholar 

  6. Stoeckli, M., Farmer, T. B., and Caprioli, R. M. (1999) Automated mass spectrometry imaging with a matrix-assisted laser desorption ionization time-of-flight instrument, J Am Soc Mass Spectrom 10, 67–71.

    Article  PubMed  CAS  Google Scholar 

  7. Karas, M., and Kruger, R. (2003) Ion formation in MALDI: the cluster ionization mechanism, Chem Rev 103, 427–440.

    Article  PubMed  CAS  Google Scholar 

  8. Knochenmuss, R., and Zenobi, R. (2003) MALDI ionization: the role of in-plume processes, Chem Rev 103, 441–452.

    Article  PubMed  CAS  Google Scholar 

  9. Fournier, I., Marinach, C., Tabet, J. C., and Bolbach, G. (2003) Irradiation effects in MALDI, ablation, ion production, and surface modifications. Part II. 2,5-dihydroxybenzoic acid monocrystals, J Am Soc Mass Spectrom 14, 893–899.

    Article  PubMed  CAS  Google Scholar 

  10. Fournier, I., Tabet, J. C., and Bolbach, G. (2002) Irradiation effects in MALDI and surface modifications Part I : Sinapinic acid monocristals, Int JMS 219, 1515–1523.

    Google Scholar 

  11. Lemaire, R., Tabet, J. C., Ducoroy, P., Hendra, J. B., Salzet, M., and Fournier, I. (2006) Solid ionic matrixes for direct tissue analysis and MALDI imaging, Anal Chem 78, 809–819.

    Article  PubMed  CAS  Google Scholar 

  12. Stoeckli, M., Staab, D., Staufenbiel, M., Wiederhold, K. H., and Signor, L. (2002) Molecular imaging of amyloid beta peptides in mouse brain sections using mass spectrometry, Anal Biochem 311, 33–39.

    Article  PubMed  CAS  Google Scholar 

  13. Chaurand, P., Schwartz, S. A., and Caprioli, R. M. (2002) Imaging mass spectrometry: a new tool to investigate the spatial organization of peptides and proteins in mammalian tissue sections, Curr Opin Chem Biol 6, 676–681.

    Article  PubMed  CAS  Google Scholar 

  14. Chaurand, P., and Caprioli, R. M. (2002) Direct profiling and imaging of peptides and proteins from mammalian cells and tissue sections by mass spectrometry, Electrophoresis 23, 3125–3135.

    Article  PubMed  CAS  Google Scholar 

  15. Schuerenberg, M., Luebbert, C., Deininger, S. O., Ketterlinus, R., and Suckau, D. (2007) MALDI tissue imaging: mass spectrometric localization of biomarkers in tissue slices, Nature Methods.

    Google Scholar 

  16. Baluya, D. L., Garrett, T. J., and Yost, R. A. (2007) Automated MALDI Matrix Deposition Method with Inkjet Printing for Imaging Mass Spectrometry, Anal Chem.

    Google Scholar 

  17. Hankin, J. A., Barkley, R. M., and Murphy, R. C. (2007) Sublimation as a Method of Matrix Application for Mass Spectrometric Imaging, J Am Soc Mass Spectrom.

    Google Scholar 

  18. Spengler, B., and Hubert, M. (2002) Scanning microprobe matrix-assisted laser desorption ionization (SMALDI) mass spectrometry: instrumentation for sub-micrometer resolved LDI and MALDI surface analysis, J Am Soc Mass Spectrom 13, 735–748.

    Article  PubMed  CAS  Google Scholar 

  19. Dreisewerd, K. S., M.; Karas,M.; Hillenkamp, F. (1995) Influence of the laser intensity and spot size on the desorption ofmolecules and ions in matrix-assisted laser desorption/ionization with a uniform beam profile, Int J Mass Spectrom 141, 127–148.

    Google Scholar 

  20. Holle, A., Haase, A., Kayser, M., and Hohndorf, J. (2006) Optimizing UV laser focus profiles for improved MALDI performance, J Mass Spectrom 41, 705–716.

    Article  PubMed  CAS  Google Scholar 

  21. Chaurand, P., Schriver, K. E., and Caprioli, R. M. (2007) Instrument design and characterization for high resolution MALDI-MS imaging of tissue sections, J Mass Spectrom 42, 476–489.

    Article  PubMed  CAS  Google Scholar 

  22. Jurchen, J. C., Rubakhin, S. S., and Sweedler, J. V. (2005) MALDI-MS imaging of features smaller than the size of the laser beam, J Am Soc Mass Spectrom 16, 1654–1659.

    Article  PubMed  CAS  Google Scholar 

  23. Altelaar, M. A. F. T., I.M.;,McDonnell, L.A.;Verhaert, P.D.E.M.; De Lange, R.P.J.; Adanc, R.A.H.; Mooid, W.J., and Heeren, R. M. A. P. S. R. (2007) High-resolution MALDI imaging mass spectrometry allows localization of peptide distributions at cellular length scales in pituitary tissue sections, Int J Mass Spectrom 260, 203–211.

    Google Scholar 

  24. Klerk, L. A. B., A.; Fletcher, I.W.; van Liere, R.; Heeren, R.M.A. . (2007) Extended data analysis strategies for high resolution imaging MS: New methods to deal with extremely large image hyperspectral datasets, Int J Mass Spectrom 260, 222–236.

    Google Scholar 

  25. Schwartz, S. A., Weil, R. J., Johnson, M. D., Toms, S. A., and Caprioli, R. M. (2004) Protein profiling in brain tumors using mass spectrometry: feasibility of a new technique for the analysis of protein expression, Clin Cancer Res 10, 981–987.

    Article  PubMed  CAS  Google Scholar 

  26. Chaurand, P., Schwartz, S. A., and Caprioli, R. M. (2004) Assessing protein patterns in disease using imaging mass spectrometry, J Proteome Res 3, 245–252.

    Article  PubMed  CAS  Google Scholar 

  27. McCombie, G., Staab, D., Stoeckli, M., and Knochenmuss, R. (2005) Spatial and spectral correlations in MALDI mass spectrometry images by clustering and multivariate analysis, Anal Chem 77, 6118–6124.

    Article  PubMed  CAS  Google Scholar 

  28. Deininger, S. O., Ebert, M. P., Futterer, A., Gerhard, M., and Rocken, C. (2008) MALDI Imaging Combined with Hierarchical Clustering as a New Tool for the Interpretation of Complex Human Cancers, J Proteome Res.

    Google Scholar 

  29. Van de Plas, R., Ojeda, F., Dewil, M., Van Den Bosch, L., De Moor, B., and Waelkens, E. (2007) Prospective exploration of biochemical tissue composition via imaging mass spectrometry guided by principal component analysis, Pac Symp Biocomput, 458–469.

    Google Scholar 

  30. Walch, A., Rauser, S., Deininger, S. O., and Hofler, H. (2008) MALDI imaging mass spectrometry for direct tissue analysis: a new frontier for molecular histology, Histochem Cell Biol 130, 421–434.

    Article  PubMed  CAS  Google Scholar 

  31. Jackson, S. N., Wang, H. Y., and Woods, A. S. (2005) In situ structural characterization of phosphatidylcholines in brain tissue using MALDI-MS/MS, J Am Soc Mass Spectrom 16, 2052–2056.

    Article  PubMed  CAS  Google Scholar 

  32. Wang, H. Y., Jackson, S. N., McEuen, J., and Woods, A. S. (2005) Localization and analyses of small drug molecules in rat brain tissue sections, Anal Chem 77, 6682–6686.

    Article  PubMed  CAS  Google Scholar 

  33. Jackson, S. N., Wang, H. Y., and Woods, A. S. (2005) Direct profiling of lipid distribution in brain tissue using MALDI-TOFMS, Anal Chem 77, 4523–4527.

    Article  PubMed  CAS  Google Scholar 

  34. Jackson, S. N., Wang, H. Y., Woods, A. S., Ugarov, M., Egan, T., and Schultz, J. A. (2005) Direct tissue analysis of phospholipids in rat brain using MALDI-TOFMS and MALDI-ion mobility-TOFMS, J Am Soc Mass Spectrom 16, 133–138.

    Article  PubMed  CAS  Google Scholar 

  35. Wang, H. Y., Jackson, S. N., and Woods, A. S. (2007) Direct MALDI-MS analysis of cardiolipin from rat organs sections, J Am Soc Mass Spectrom 18, 567–577.

    Article  PubMed  CAS  Google Scholar 

  36. Hsieh, Y., Chen, J., and Korfmacher, W. A. (2007) Mapping pharmaceuticals in tissues using MALDI imaging mass spectrometry, J Pharmacol Toxicol Methods 55, 193–200.

    Article  PubMed  CAS  Google Scholar 

  37. Garrett, T. J. P.-C., M.C.;Kovtoun, V.;Bui, H.; Izgarian, N.; Stafford, G.; Yost, R.A. (2007) Imaging of small molecules in tissue sections with a new intermediate-pressure MALDI linear ion trap mass spectrometer, Int J Mass Spectrom 260, 166–176.

    Google Scholar 

  38. Franck, J., Arafah, K., Barnes, A., Wisztorski, M., Salzet, M., and Fournier, I. (2009) Improving tissue preparation for matrix-assisted laser desorption ionization mass spectrometry imaging. Part 1: using microspotting, Anal Chem 81, 8193–8202.

    Article  PubMed  CAS  Google Scholar 

  39. Colsch, B., and Woods, A. S. Localization and imaging of sialylated glycosphingolipids in brain tissue sections by MALDI mass spectrometry, Glycobiology 20, 661–667.

    Google Scholar 

  40. Chan, K., Lanthier, P., Liu, X., Sandhu, J. K., Stanimirovic, D., and Li, J. (2009) MALDI mass spectrometry imaging of gangliosides in mouse brain using ionic liquid matrix, Anal Chim Acta 639, 57–61.

    Article  PubMed  CAS  Google Scholar 

  41. Meriaux, C., Franck, J., Wisztorski, M., Salzet, M., and Fournier, I. Liquid ionic matrixes for MALDI mass spectrometry imaging of lipids, J Proteomics 73, 1204–1218.

    Google Scholar 

  42. Puolitaival, S. M., Burnum, K. E., Cornett, D. S., and Caprioli, R. M. (2008) Solvent-Free Matrix Dry-Coating for MALDI Imaging of Phospholipids, J Am Soc Mass Spectrom.

    Google Scholar 

  43. Bouschen, W., Schulz, O., Eikel, D., and Spengler, B. Matrix vapor deposition/recrystallization and dedicated spray preparation for high-resolution scanning microprobe matrix-assisted laser desorption/ionization imaging mass spectrometry (SMALDI-MS) of tissue and single cells, Rapid Commun Mass Spectrom 24, 355–364.

    Google Scholar 

  44. Trimpin, S. A perspective on MALDI alternatives-total solvent-free analysis and electron transfer dissociation of highly charged ions by laserspray ionization, J Mass Spectrom 45, 471–485.

    Google Scholar 

  45. Rompp, A., Guenther, S., Schober, Y., Schulz, O., Takats, Z., Kummer, W., and Spengler, B. Histology by Mass Spectrometry: Label-Free Tissue Characterization Obtained from High-Accuracy Bioanalytical Imaging, Angew Chem Int Ed Engl 49, 3834–3838.

    Google Scholar 

  46. Lemaire, R., Stauber, J., Wisztorski, M., Van Camp, C., Desmons, A., Deschamps, M., Proess, G., Rudlof, I., Woods, A. S., Day, R., Salzet, M., and Fournier, I. (2007) Tag-mass: specific molecular imaging of transcriptome and proteome by mass spectrometry based on photocleavable tag, J Proteome Res 6, 2057–2067.

    Article  PubMed  CAS  Google Scholar 

  47. Thiery, G., Shchepinov, M. S., Southern, E. M., Audebourg, A., Audard, V., Terris, B., and Gut, I. G. (2007) Multiplex target protein imaging in tissue sections by mass spectrometry--TAMSIM, Rapid Commun Mass Spectrom 21, 823–829.

    Article  PubMed  CAS  Google Scholar 

  48. Thiery, G., Anselmi, E., Audebourg, A., Darii, E., Abarbri, M., Terris, B., Tabet, J. C., and Gut, I. G. (2008) Improvements of TArgeted multiplex mass spectrometry IMaging, Proteomics 8, 3725–3734.

    Article  PubMed  CAS  Google Scholar 

  49. McLafferty, F. W., Kelleher, N. L., Begley, T. P., Fridriksson, E. K., Zubarev, R. A., and Horn, D. M. (1998) Two-dimensional mass spectrometry of biomolecules at the subfemtomole level, Curr Opin Chem Biol 2, 571–578.

    Article  PubMed  CAS  Google Scholar 

  50. Zubarev, R. A., Horn, D. M., Fridriksson, E. K., Kelleher, N. L., Kruger, N. A., Lewis, M. A., Carpenter, B. K., and McLafferty, F. W. (2000) Electron capture dissociation for structural characterization of multiply charged protein cations, Anal Chem 72, 563–573.

    Article  PubMed  CAS  Google Scholar 

  51. Reiber, D. C., Brown, R. S., Weinberger, S., Kenny, J., and Bailey, J. (1998) Unknown peptide sequencing using matrix-assisted laser desorption/ionization and in-source decay, Anal Chem 70, 1214–1222.

    Article  PubMed  CAS  Google Scholar 

  52. Reiber, D. C., Grover, T. A., and Brown, R. S. (1998) Identifying proteins using matrix-assisted laser desorption/ionization in-source fragmentation data combined with database searching, Anal Chem 70, 673–683.

    Article  PubMed  CAS  Google Scholar 

  53. Roepstorff, P., and Fohlman, J. (1984) Proposal for a common nomenclature for sequence ions in mass spectra of peptides, Biomed Mass Spectrom 11, 601.

    Article  PubMed  CAS  Google Scholar 

  54. Raska, C. S., Parker, C. E., Huang, C., Han, J., Glish, G. L., Pope, M., and Borchers, C. H. (2002) Pseudo-MS3 in a MALDI orthogonal quadrupole-time of flight mass spectrometer, J Am Soc Mass Spectrom 13, 1034–1041.

    Article  PubMed  CAS  Google Scholar 

  55. Demeure, K., Quinton, L., Gabelica, V., and De Pauw, E. (2007) Rational selection of the optimum MALDI matrix for top-down proteomics by in-source decay, Anal Chem 79, 8678–8685.

    Article  PubMed  CAS  Google Scholar 

  56. Debois, D., Bertrand, V., Quinton, L., De Pauw-Gillet, M. C., and De Pauw, E. MALDI-In Source Decay Applied to Mass Spectrometry Imaging: A New Tool for Protein Identification, Anal Chem.

    Google Scholar 

  57. Lemaire, R., Desmons, A., Tabet, J. C., Day, R., Salzet, M., and Fournier, I. (2007) Direct analysis and MALDI imaging of formalin-fixed, paraffin-embedded tissue sections, J Proteome Res 6, 1295–1305.

    Article  PubMed  CAS  Google Scholar 

  58. Groseclose, M. R., Andersson, M., Hardesty, W. M., and Caprioli, R. M. (2007) Identification of proteins directly from tissue: in situ tryptic digestions coupled with imaging mass spectrometry, J Mass Spectrom 42, 254–262.

    Article  PubMed  CAS  Google Scholar 

  59. Groseclose, M. R., Massion, P. P., Chaurand, P., and Caprioli, R. M. (2008) High-throughput proteomic analysis of formalin-fixed paraffin-embedded tissue microarrays using MALDI imaging mass spectrometry, Proteomics 8, 3715–3724.

    Article  PubMed  CAS  Google Scholar 

  60. Ronci, M., Bonanno, E., Colantoni, A., Pieroni, L., Di Ilio, C., Spagnoli, L. G., Federici, G., and Urbani, A. (2008) Protein unlocking procedures of formalin-fixed paraffin-embedded tissues: Application to MALDI-TOF imaging MS investigations, Proteomics 8, 3702–3714.

    Article  PubMed  CAS  Google Scholar 

  61. Djidja, M. C., Francese, S., Loadman, P. M., Sutton, C. W., Scriven, P., Claude, E., Snel, M. F., Franck, J., Salzet, M., and Clench, M. R. (2009) Detergent addition to tryptic digests and ion mobility separation prior to MS/MS improves peptide yield and protein identification for in situ proteomic investigation of frozen and formalin-fixed paraffin-embedded adenocarcinoma tissue sections, Proteomics 9, 2750–2763.

    Article  PubMed  CAS  Google Scholar 

  62. Stauber, J., Lemaire, R., Franck, J., Bonnel, D., Croix, D., Day, R., Wisztorski, M., Fournier, I., and Salzet, M. (2008) MALDI imaging of formalin-fixed paraffin-embedded tissues: application to model animals of Parkinson disease for biomarker hunting, J Proteome Res 7, 969–978.

    Article  PubMed  CAS  Google Scholar 

  63. Gustafsson, J. O., Oehler, M. K., McColl, S. R., and Hoffmann, P. Citric acid antigen retrieval (CAAR) for tryptic peptide imaging directly on archived formalin-fixed paraffin-embedded tissue, J Proteome Res 9, 4315–4328.

    Google Scholar 

  64. Franck, J., El Ayed, M., Wisztorski, M., Salzet, M., and Fournier, I. (2009) On-tissue N-terminal peptide derivatizations for enhancing protein identification in MALDI mass spectrometric imaging strategies, Anal Chem 81, 8305–8317.

    Article  PubMed  CAS  Google Scholar 

  65. Cornett, D. S., Reyzer, M. L., Chaurand, P., and Caprioli, R. M. (2007) MALDI imaging mass spectrometry: molecular snapshots of biochemical systems, Nat Methods 4, 828–833.

    Article  PubMed  CAS  Google Scholar 

  66. Lemaire, R., Menguellet, S. A., Stauber, J., Marchaudon, V., Lucot, J. P., Collinet, P., Farine, M. O., Vinatier, D., Day, R., Ducoroy, P., Salzet, M., and Fournier, I. (2007) Specific MALDI Imaging and Profiling for Biomarker Hunting and Validation: Fragment of the 11 S Proteasome Activator Complex, Reg Alpha Fragment, Is a New Potential Ovary Cancer Biomarker, J Proteome Res 6, 4127–4134.

    Article  PubMed  CAS  Google Scholar 

  67. Chaurand, P., DaGue, B. B., Pearsall, R. S., Threadgill, D. W., and Caprioli, R. M. (2001) Profiling proteins from azoxymethane-induced colon tumors at the molecular level by matrix-assisted laser desorption/ionization mass spectrometry, Proteomics 1, 1320–1326.

    Article  PubMed  CAS  Google Scholar 

  68. Chaurand, P., Sanders, M. E., Jensen, R. A., and Caprioli, R. M. (2004) Proteomics in diagnostic pathology: profiling and imaging proteins directly in tissue sections, Am J Pathol 165, 1057–1068.

    Article  PubMed  CAS  Google Scholar 

  69. Fournier, I., Day, R., and Salzet, M. (2003) Direct analysis of neuropeptides by in situ MALDI-TOF mass spectrometry in the rat brain, Neuro Endocrinol Lett 24, 9–14.

    PubMed  CAS  Google Scholar 

  70. Hintersteiner, M., Enz, A., Frey, P., Jaton, A. L., Kinzy, W., Kneuer, R., Neumann, U., Rudin, M., Staufenbiel, M., Stoeckli, M., Wiederhold, K. H., and Gremlich, H. U. (2005) In vivo detection of amyloid-beta deposits by near-infrared imaging using an oxazine-derivative probe, Nat Biotechnol 23, 577–583.

    Article  PubMed  CAS  Google Scholar 

  71. Langstrom, B., Andren, P. E., Lindhe, O., Svedberg, M., and Hall, H. (2007) In vitro imaging techniques in neurodegenerative diseases, Mol Imaging Biol 9, 161–175.

    Article  PubMed  Google Scholar 

  72. Laurent, C., Levinson, D. F., Schwartz, S. A., Harrington, P. B., Markey, S. P., Caprioli, R. M., and Levitt, P. (2005) Direct profiling of the cerebellum by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry: A methodological study in postnatal and adult mouse, J Neurosci Res 81, 613–621.

    Article  PubMed  CAS  Google Scholar 

  73. Meistermann, H., Norris, J. L., Aerni, H. R., Cornett, D. S., Friedlein, A., Erskine, A. R., Augustin, A., De Vera Mudry, M. C., Ruepp, S., Suter, L., Langen, H., Caprioli, R. M., and Ducret, A. (2006) Biomarker discovery by imaging mass spectrometry: transthyretin is a biomarker for gentamicin-induced nephrotoxicity in rat, Mol Cell Proteomics 5, 1876–1886.

    Article  PubMed  CAS  Google Scholar 

  74. Pierson, J., Svenningsson, P., Caprioli, R. M., and Andren, P. E. (2005) Increased levels of ubiquitin in the 6-OHDA-lesioned striatum of rats, J Proteome Res 4, 223–226.

    Article  PubMed  CAS  Google Scholar 

  75. Reyzer, M. L., and Caprioli, R. M. (2005) MALDI mass spectrometry for direct tissue analysis: a new tool for biomarker discovery, J Proteome Res 4, 1138–1142.

    Article  PubMed  CAS  Google Scholar 

  76. Schwartz, S. A., Weil, R. J., Thompson, R. C., Shyr, Y., Moore, J. H., Toms, S. A., Johnson, M. D., and Caprioli, R. M. (2005) Proteomic-based prognosis of brain tumor patients using direct-tissue matrix-assisted laser desorption ionization mass spectrometry, Cancer Res 65, 7674–7681.

    PubMed  CAS  Google Scholar 

  77. Skold, K., Svensson, M., Nilsson, A., Zhang, X., Nydahl, K., Caprioli, R. M., Svenningsson, P., and Andren, P. E. (2006) Decreased striatal levels of PEP-19 following MPTP lesion in the mouse, J Proteome Res 5, 262–269.

    Article  PubMed  CAS  Google Scholar 

  78. Jimenez, C. R., Li, K. W., Dreisewerd, K., Spijker, S., Kingston, R., Bateman, R. H., Burlingame, A. L., Smit, A. B., van Minnen, J., and Geraerts, W. P. (1998) Direct mass spectrometric peptide profiling and sequencing of single neurons reveals differential peptide patterns in a small neuronal network, Biochemistry 37, 2070–2076.

    Article  PubMed  CAS  Google Scholar 

  79. Li, K. W., Hoek, R. M., Smith, F., Jimenez, C. R., van der Schors, R. C., van Veelen, P. A., Chen, S., van der Greef, J., Parish, D. C., Benjamin, P. R., and et al. (1994) Direct peptide profiling by mass spectrometry of single identified neurons reveals complex neuropeptide-processing pattern, J Biol Chem 269, 30288–30292.

    PubMed  CAS  Google Scholar 

  80. Li, K. W., Jimenez, C. R., Van Veelen, P. A., and Geraerts, W. P. (1994) Processing and targeting of a molluscan egg-laying peptide prohormone as revealed by mass spectrometric peptide fingerprinting and peptide sequen-cing, Endocrinology 134, 1812–1819.

    Article  PubMed  CAS  Google Scholar 

  81. Li, L., Garden, R. W., and Sweedler, J. V. (2000) Single-cell MALDI: a new tool for direct peptide profiling, Trends Biotechnol 18, 151–160.

    Article  PubMed  CAS  Google Scholar 

  82. Li, L., Romanova, E. V., Rubakhin, S. S., Alexeeva, V., Weiss, K. R., Vilim, F. S., and Sweedler, J. V. (2000) Peptide profiling of cells with multiple gene products: combining immunochemistry and MALDI mass spectrometry with on-plate microextraction, Anal Chem 72, 3867–3874.

    Article  PubMed  CAS  Google Scholar 

  83. Li, K. W., van Golen, F. A., van Minnen, J., van Veelen, P. A., van der Greef, J., and Geraerts, W. P. (1994) Structural identification, neuronal synthesis, and role in male copulation of myomodulin-A of Lymnaea: a study involving direct peptide profiling of nervous tissue by mass spectrometry, Brain Res Mol Brain Res 25, 355–358.

    Article  PubMed  CAS  Google Scholar 

  84. Hummon, A. B., Amare, A., and Sweedler, J. V. (2006) Discovering new invertebrate neuropeptides using mass spectrometry, Mass Spectrom Rev 25, 77–98.

    Article  PubMed  CAS  Google Scholar 

  85. Hummon, A. B., Richmond, T. A., Verleyen, P., Baggerman, G., Huybrechts, J., Ewing, M. A., Vierstraete, E., Rodriguez-Zas, S. L., Schoofs, L., Robinson, G. E., and Sweedler, J. V. (2006) From the genome to the proteome: uncovering peptides in the Apis brain, Science 314, 647–649.

    Article  PubMed  CAS  Google Scholar 

  86. Altelaar, A. F., van Minnen, J., Jimenez, C. R., Heeren, R. M., and Piersma, S. R. (2005) Direct molecular imaging of Lymnaea stagnalis nervous tissue at subcellular spatial resolution by mass spectrometry, Anal Chem 77, 735–741.

    Article  PubMed  CAS  Google Scholar 

  87. de Lange, R. P., and van Minnen, J. (1998) Localization of the neuropeptide APGWamide in gastropod molluscs by in situ hybridization and immunocytochemistry, Gen Comp Endocrinol 109, 166–174.

    Article  PubMed  Google Scholar 

  88. DeKeyser, S. S., Kutz-Naber, K. K., Schmidt, J. J., Barrett-Wilt, G. A., and Li, L. (2007) Imaging mass spectrometry of neuropeptides in decapod crustacean neuronal tissues, J Proteome Res 6, 1782–1791.

    Article  PubMed  CAS  Google Scholar 

  89. DeKeyser, S. S., and Li, L. (2007) Mass spectrometric charting of neuropeptides in arthropod neurons, Anal Bioanal Chem 387, 29–35.

    Article  PubMed  CAS  Google Scholar 

  90. Francese, S., Lambardi, D., Mastrobuoni, G., la Marca, G., Moneti, G., and Turillazzi, S. (2009) Detection of honeybee venom in envenomed tissues by direct MALDI MSI, J Am Soc Mass Spectrom 20, 112–123.

    Article  PubMed  CAS  Google Scholar 

  91. Amare, A., and Sweedler, J. V. (2007) Neuropeptide precursors in Tribolium castaneum, Peptides 28, 1282–1291.

    Article  PubMed  CAS  Google Scholar 

  92. Dani, F. R., Francese, S., Mastrobuoni, G., Felicioli, A., Caputo, B., Simard, F., Pieraccini, G., Moneti, G., Coluzzi, M., della Torre, A., and Turillazzi, S. (2008) Exploring proteins in Anopheles gambiae male and female antennae through MALDI mass spectrometry profiling, PLoS One 3, e2822.

    Google Scholar 

  93. Hofer, S., Dircksen, H., Tollback, P., and Homberg, U. (2005) Novel insect orcokinins: characterization and neuronal distribution in the brains of selected dicondylian insects, J Comp Neurol 490, 57–71.

    Article  PubMed  CAS  Google Scholar 

  94. Meriaux, C., Arafah, K., Tasiemski, A., Wisztorski, M., Bruand, J., Boidin-Wichlacz, C., Desmons, A., Debois, D., Laprevote, O., Brunelle, A., Gaasterland, T., Macagno, E., Fournier, I., and Salzet, M. Multiple changes in peptide and lipid expression associated with regeneration in the nervous system of the medicinal leech, PLoS One 6, e18359.

    Google Scholar 

  95. Bruand, J., Sistla, S., Meriaux, C., Dorrestein, P. C., Gaasterland, T., Ghassemian, M., Wisztorski, M., Fournier, I., Salzet, M., Macagno, E., and Bafna, V. (2011) Automated Querying and Identification of Novel Peptides using MALDI Mass Spectrometric Imaging, J Proteome Res, In Press.

    Google Scholar 

  96. Wisztorski, M., Croix, D., Macagno, E., Fournier, I., and Salzet, M. (2008) Molecular MALDI imaging: An emerging technology for neuroscience studies, Dev Neurobiol 68, 845–858.

    Article  PubMed  CAS  Google Scholar 

  97. Montolio, M., Messeguer, J., Masip, I., Guijarro, P., Gavin, R., Antonio Del Rio, J., Messeguer, A., and Soriano, E. (2009) A semaphorin 3A inhibitor blocks axonal chemorepulsion and enhances axon regeneration, Chem Biol 16, 691–701.

    Article  PubMed  CAS  Google Scholar 

  98. Cebria, F., Nakazawa, M., Mineta, K., Ikeo, K., Gojobori, T., and Agata, K. (2002) Dissecting planarian central nervous system regeneration by the expression of neural-specific genes, Dev Growth Differ 44, 135–146.

    Article  PubMed  CAS  Google Scholar 

  99. Astic, L., Pellier-Monnin, V., Saucier, D., Charrier, C., and Mehlen, P. (2002) Expression of netrin-1 and netrin-1 receptor, DCC, in the rat olfactory nerve pathway during development and axonal regeneration, Neuroscience 109, 643–656.

    Article  PubMed  CAS  Google Scholar 

  100. Shifman, M. I., and Selzer, M. E. (2000) Expression of the netrin receptor UNC-5 in lamprey brain: modulation by spinal cord transection, Neurorehabil Neural Repair 14, 49–58.

    Article  PubMed  CAS  Google Scholar 

  101. Blackshaw, S. E., Babington, E. J., Emes, R. D., Malek, J., and Wang, W. Z. (2004) Identifying genes for neuron survival and axon outgrowth in Hirudo medicinalis, J Anat 204, 13–24.

    Article  PubMed  CAS  Google Scholar 

  102. Vergote, D., Macagno, E. R., Salzet, M., and Sautiere, P. E. (2006) Proteome modifications of the medicinal leech nervous system under bacterial challenge, Proteomics 6, 4817–4825.

    Article  PubMed  CAS  Google Scholar 

  103. Vergote, D., Sautiere, P. E., Vandenbulcke, F., Vieau, D., Mitta, G., Macagno, E. R., and Salzet, M. (2004) Up-regulation of neurohemerythrin expression in the central nervous system of the medicinal leech, Hirudo medicinalis, following septic injury, J Biol Chem 279, 43828–43837.

    Article  PubMed  CAS  Google Scholar 

  104. Xu, Y., Bolton, B., Zipser, B., Jellies, J., Johansen, K. M., and Johansen, J. (1999) Gliarin and macrolin, two novel intermediate filament proteins specifically expressed in sets and subsets of glial cells in leech central nervous system, J Neurobiol 40, 244–253.

    Article  PubMed  CAS  Google Scholar 

  105. Venkitaramani, D. V., Wang, D., Ji, Y., Xu, Y. Z., Ponguta, L., Bock, K., Zipser, B., Jellies, J., Johansen, K. M., and Johansen, J. (2004) Leech filamin and Tractin: markers for muscle development and nerve formation, J Neurobiol 60, 369–380.

    Article  PubMed  CAS  Google Scholar 

  106. Sethi, J., Zhao, B., Cuvillier-Hot, V., Boidin-Wichlacz, C., Salzet, M., Macagno, E. R., and Baker, M. W. (2010) The receptor protein tyrosine phosphatase HmLAR1 is up-regulated in the CNS of the adult medicinal leech following injury and is required for neuronal sprouting and regeneration, Mol Cell Neurosci 45, 430–438.

    Article  PubMed  CAS  Google Scholar 

  107. Huang, Y., Jellies, J., Johansen, K. M., and Johansen, J. (1997) Differential glycosylation of tractin and LeechCAM, two novel Ig superfamily members, regulates neurite extension and fascicle formation, J Cell Biol 138, 143–157.

    Article  PubMed  CAS  Google Scholar 

  108. Huang, Y., Jellies, J., Johansen, K. M., and Johansen, J. (1998) Development and pathway formation of peripheral neurons during leech embryogenesis, J Comp Neurol 397, 394–402.

    Article  PubMed  CAS  Google Scholar 

  109. Jie, C., Xu, Y., Wang, D., Lukin, D., Zipser, B., Jellies, J., Johansen, K. M., and Johansen, J. (2000) Posttranslational processing and differential glycosylation of Tractin, an Ig-superfamily member involved in regulation of axonal outgrowth, Biochim Biophys Acta 1479, 1–14.

    Article  PubMed  CAS  Google Scholar 

  110. Xu, Y. Z., Ji, Y., Zipser, B., Jellies, J., Johansen, K. M., and Johansen, J. (2003) Proteolytic cleavage of the ectodomain of the L1 CAM family member Tractin, J Biol Chem 278, 4322–4330.

    Article  PubMed  CAS  Google Scholar 

  111. Gan, W. B., Wong, V. Y., Phillips, A., Ma, C., Gershon, T. R., and Macagno, E. R. (1999) Cellular expression of a leech netrin suggests roles in the formation of longitudinal nerve tracts and in regional innervation of peripheral targets, J Neurobiol 40, 103–115.

    Article  PubMed  CAS  Google Scholar 

  112. Ji, Y., Schroeder, D., Byrne, D., Zipser, B., Jellies, J., Johansen, K. M., and Johansen, J. (2001) Molecular identification and sequence analysis of Hillarin, a novel protein localized at the axon hillock, Biochim Biophys Acta 1519, 246–249.

    PubMed  CAS  Google Scholar 

  113. Biswas, S. C., Dutt, A., Baker, M. W., and Macagno, E. R. (2002) Association of LAR-like receptor protein tyrosine phosphatases with an enabled homolog in Hirudo medicinalis, Mol Cell Neurosci 21, 657–670.

    Article  PubMed  CAS  Google Scholar 

  114. Finger, F. P., Kopish, K. R., and White, J. G. (2003) A role for septins in cellular and axonal migration in C. elegans, Dev Biol 261, 220–234.

    Article  PubMed  CAS  Google Scholar 

  115. Ji, Y., Rath, U., Girton, J., Johansen, K. M., and Johansen, J. (2005) D-Hillarin, a novel W180-domain protein, affects cytokinesis through interaction with the septin family member Pnut, J Neurobiol 64, 157–169.

    Article  PubMed  CAS  Google Scholar 

  116. Baker, M. W., and Macagno, E. R. (2010) Expression levels of a LAR-like receptor protein tyrosine phosphatase correlate with neuronal branching and arbor density in the medicinal leech, Dev Biol 344, 346–357.

    Article  PubMed  CAS  Google Scholar 

  117. Aisemberg, G. O., Wong, V. Y., and Macagno, E. R. (1995) Genesis of segmental identity in the leech nervous system, EXS 72, 77–87.

    PubMed  CAS  Google Scholar 

  118. Aisemberg, G. O., Wysocka-Diller, J., Wong, V. Y., and Macagno, E. R. (1993) Antennapedia-class homebox genes define diverse neuronal sets in the embryonic CNS of the leech, J Neurobiol 24, 1423–1432.

    Article  PubMed  CAS  Google Scholar 

  119. Schikorski, D., Cuvillier-Hot, V., Leippe, M., Boidin-Wichlacz, C., Slomianny, C., Macagno, E., Salzet, M., and Tasiemski, A. (2008) Microbial challenge promotes the regenerative process of the injured central nervous system of the medicinal leech by inducing the synthesis of antimicrobial peptides in neurons and microglia, J Immunol 181, 1083–1095.

    PubMed  CAS  Google Scholar 

  120. Schikorski, D., Cuvillier-Hot, V., Boidin-Wichlacz, C., Slomianny, C., Salzet, M., and Tasiemski, A. (2009) Deciphering the immune function and regulation by a TLR of the cytokine EMAPII in the lesioned central nervous system using a leech model, J Immunol 183, 7119–7128.

    Article  PubMed  CAS  Google Scholar 

  121. Croq, F., Vizioli, J., Tuzova, M., Tahtouh, M., Sautiere, P. E., Van Camp, C., Salzet, M., Cruikshank, W. W., Pestel, J., and Lefebvre, C. (2010) A homologous form of human interleukin 16 is implicated in microglia recruitment following nervous system injury in leech Hirudo medicinalis, Glia 58, 1649–1662.

    Article  PubMed  Google Scholar 

  122. Tahtouh, M., Croq, F., Vizioli, J., Sautiere, P. E., Van Camp, C., Salzet, M., Daha, M. R., Pestel, J., and Lefebvre, C. (2009) Evidence for a novel chemotactic C1q domain-containing factor in the leech nerve cord, Mol Immunol 46, 523–531.

    Article  PubMed  CAS  Google Scholar 

  123. Farber, K., Cheung, G., Mitchell, D., Wallis, R., Weihe, E., Schwaeble, W., and Kettenmann, H. (2009) C1q, the recognition subcomponent of the classical pathway of complement, drives microglial activation, J Neurosci Res 87, 644–652.

    Article  PubMed  CAS  Google Scholar 

  124. Guo, L. H., Mittelbronn, M., Brabeck, C., Mueller, C. A., and Schluesener, H. J. (2004) Expression of interleukin-16 by microglial cells in inflammatory, autoimmune, and degenerative lesions of the rat brain, J Neuroimmunol 146, 39–45.

    Article  PubMed  CAS  Google Scholar 

  125. Kleinschek, M. A., Owyang, A. M., Joyce-Shaikh, B., Langrish, C. L., Chen, Y., Gorman, D. M., Blumenschein, W. M., McClanahan, T., Brombacher, F., Hurst, S. D., Kastelein, R. A., and Cua, D. J. (2007) IL-25 regulates Th17 function in autoimmune inflammation, J Exp Med 204, 161–170.

    Article  PubMed  CAS  Google Scholar 

  126. Liebrich, M., Guo, L. H., Schluesener, H. J., Schwab, J. M., Dietz, K., Will, B. E., and Meyermann, R. (2007) Expression of interleukin-16 by tumor-associated macrophages/activated microglia in high-grade astrocytic brain tumors, Arch Immunol Ther Exp (Warsz) 55, 41–47.

    Article  CAS  Google Scholar 

  127. Melzer, N., Meuth, S. G., Torres-Salazar, D., Bittner, S., Zozulya, A. L., Weidenfeller, C., Kotsiari, A., Stangel, M., Fahlke, C., and Wiendl, H. (2008) A beta-lactam antibiotic dampens excitotoxic inflammatory CNS damage in a mouse model of multiple sclerosis, PLoS One 3, e3149.

    Article  PubMed  CAS  Google Scholar 

  128. Mueller, C. A., Schluesener, H. J., Conrad, S., Pietsch, T., and Schwab, J. M. (2006) Spinal cord injury-induced expression of the immune-regulatory chemokine interleukin-16 caused by activated microglia/macrophages and CD8+ cells, J Neurosurg Spine 4, 233–240.

    Article  PubMed  Google Scholar 

  129. Macagno, E. R., Gaasterland, T., Edsall, L., Bafna, V., Soares, M. B., Scheetz, T., Casavant, T., Da Silva, C., Wincker, P., Tasiemski, A., and Salzet, M. (2010) Construction of a medicinal leech transcriptome database and its application to the identification of leech homologs of neural and innate immune genes, BMC Genomics 11, 407.

    Article  PubMed  CAS  Google Scholar 

  130. Batchelor, P. E., and Howells, D. W. (2003) CNS regeneration: clinical possibility or basic science fantasy?, J Clin Neurosci 10, 523–534.

    Article  PubMed  Google Scholar 

  131. Popovich, P. G. (2000) Immunological regulation of neuronal degeneration and regeneration in the injured spinal cord, Prog Brain Res 128, 43–58.

    Article  PubMed  CAS  Google Scholar 

  132. Salzet, M., and Macagno, E. (2009) Recent Advances on Development, Regeneration and Immune Responses of the Leech Nervous System. In: Shain DH, editor. Annelids as Models Systems in the Biological Sciences, Wiley Blackwell, 156–185.

    Google Scholar 

  133. Tasiemski, A., and Salzet, M. (2010) Leech Immunity : From brain to peripheric responses. In: Söderhäll K, editor. Invertebrate Immunity. Advances in Experimental Medicine and Biology. Uppsala: Department of Comparative Physiology, Landes Bioscience 708.

    Google Scholar 

  134. Farooqui, A. A., Ong, W. Y., Horrocks, L. A., Chen, P., and Farooqui, T. (2007) Comparison of biochemical effects of statins and fish oil in brain: the battle of the titans, Brain Res Rev 56, 443–471.

    Article  PubMed  CAS  Google Scholar 

  135. Lin, Y. H., and Salem, N., Jr. (2007) Whole body distribution of deuterated linoleic and alpha-linolenic acids and their metabolites in the rat, J Lipid Res 48, 2709–2724.

    Article  PubMed  CAS  Google Scholar 

  136. Calon, F., and Cole, G. (2007) Neuroprotective action of omega-3 polyunsaturated fatty acids against neurodegenerative diseases: evidence from animal studies, Prostaglandins Leukot Essent Fatty Acids 77, 287–293.

    Article  PubMed  CAS  Google Scholar 

  137. Calon, F., Lim, G. P., Yang, F., Morihara, T., Teter, B., Ubeda, O., Rostaing, P., Triller, A., Salem, N., Jr., Ashe, K. H., Frautschy, S. A., and Cole, G. M. (2004) Docosahexaenoic acid protects from dendritic pathology in an Alzheimer’s disease mouse model, Neuron 43, 633–645.

    Article  PubMed  CAS  Google Scholar 

  138. Mazza, M., Pomponi, M., Janiri, L., Bria, P., and Mazza, S. (2007) Omega-3 fatty acids and antioxidants in neurological and psychiatric diseases: an overview, Prog Neuropsychopharmacol Biol Psychiatry 31, 12–26.

    Article  PubMed  CAS  Google Scholar 

  139. Pereira, L. M., Hatanaka, E., Martins, E. F., Oliveira, F., Liberti, E. A., Farsky, S. H., Curi, R., and Pithon-Curi, T. C. (2008) Effect of oleic and linoleic acids on the inflammatory phase of wound healing in rats, Cell Biochem Funct 26, 197–204.

    Article  PubMed  CAS  Google Scholar 

  140. Drouet, J., Dupont, J., Nguyen, T. L., Fournie, J., and Goyffon, M. (1972) Fatty acids and phospholipids in repair tissue of a fracture site in irradiated mice effect of cysteamine, C R Seances Soc Biol Fil 166, 1585–1591.

    PubMed  CAS  Google Scholar 

  141. Gorio, A. (1986) Ganglioside enhancement of neuronal differentiation, plasticity, and repair, CRC Crit Rev Clin Neurobiol 2, 241–296.

    PubMed  CAS  Google Scholar 

  142. Salzet, M. (2005) Neuropeptide-derived antimicrobial peptides from invertebrates for biomedical applications, Curr Med Chem 12, 3055–3061.

    Article  PubMed  CAS  Google Scholar 

  143. Salzet, M. (2006) Invertebrate Neuropeptides and Hormones: Basic Knowledge and Recent Advances Res. Signpost 1, 17–37.

    Google Scholar 

  144. Sugiura, Y., Shimma, S., Konishi, Y., Yamada, M. K., and Setou, M. (2008) Imaging mass spectrometry technology and application on ganglioside study; visualization of age-dependent accumulation of C20-ganglioside molecular species in the mouse hippocampus, PLoS One 3, e3232.

    Article  PubMed  CAS  Google Scholar 

  145. Beal, M. F., and Hantraye, P. (2001) Novel therapies in the search for a cure for Huntington’s disease, Proc Natl Acad Sci U S A 98, 3–4.

    Article  PubMed  CAS  Google Scholar 

  146. Pierson, J., Norris, J. L., Aerni, H. R., Svenningsson, P., Caprioli, R. M., and Andren, P. E. (2004) Molecular profiling of experimental Parkinson’s disease: direct analysis of peptides and proteins on brain tissue sections by MALDI mass spectrometry, J Proteome Res 3, 289–295.

    Article  PubMed  CAS  Google Scholar 

  147. Wisztorski, M., Franck, J., Salzet, M., and Fournier, I. MALDI direct analysis and imaging of frozen versus FFPE tissues: what strategy for which sample?, Methods Mol Biol 656, 303–322.

    Google Scholar 

  148. Stauber, J., Macaleese, L., Franck, J., Claude, E., Snel, M., Kukrer Kaletas, B., Wiel, I. M., Wisztorski, M., Fournier, I., and Heeren, R. M. (2009) On-Tissue Protein Identification and Imaging by MALDI-Ion Mobility Mass Spectrometry, J Am Soc Mass Spectrom.

    Google Scholar 

  149. Barzilai, A., Zilkha-Falb, R., Daily, D., Stern, N., Offen, D., Ziv, I., Melamed, E., and Shirvan, A. (2000) The molecular mechanism of dopamine-induced apoptosis: identification and characterization of genes that mediate dopamine toxicity, J Neural Transm Suppl, 59–76.

    Google Scholar 

  150. Stoeckli, M., Knochenmuss, R., McCombie, G., Mueller, D., Rohner, T., Staab, D., and Wiederhold, K. H. (2006) MALDI MS imaging of amyloid, Methods Enzymol 412, 94–106.

    Article  PubMed  CAS  Google Scholar 

  151. O’Brien, E., Dedova, I., Duffy, L., Cordwell, S., Karl, T., and Matsumoto, I. (2006) Effects of chronic risperidone treatment on the striatal protein profiles in rats, Brain Res 1113, 24–32.

    Article  PubMed  CAS  Google Scholar 

  152. Chen, H., Talaty, N. N., Takats, Z., and Cooks, R. G. (2005) Desorption electrospray ionization mass spectrometry for high-throughput analysis of pharmaceutical samples in the ambient environment, Anal Chem 77, 6915–6927.

    Article  PubMed  CAS  Google Scholar 

  153. Kauppila, T. J., Wiseman, J. M., Ketola, R. A., Kotiaho, T., Cooks, R. G., and Kostiainen, R. (2006) Desorption electrospray ionization mass spectrometry for the analysis of pharmaceuticals and metabolites, Rapid Commun Mass Spectrom 20, 387–392.

    Article  PubMed  CAS  Google Scholar 

  154. Talaty, N., Takats, Z., and Cooks, R. G. (2005) Rapid in situ detection of alkaloids in plant tissue under ambient conditions using desorption electrospray ionization, Analyst 130, 1624–1633.

    Article  PubMed  CAS  Google Scholar 

  155. Altelaar, A. F., Luxembourg, S. L., McDonnell, L. A., Piersma, S. R., and Heeren, R. M. (2007) Imaging mass spectrometry at cellular length scales, Nat Protoc 2, 1185–1196.

    Article  PubMed  CAS  Google Scholar 

  156. Franck, J., Longuespee, R., Wisztorski, M., Van Remoortere, A., Van Zeijl, R., Deelder, A., Salzet, M., McDonnell, L., and Fournier, I. MALDI mass spectrometry imaging of proteins exceeding 30,000 daltons, Med Sci Monit 16, BR293-299.

    Google Scholar 

  157. van Remoortere, A., van Zeijl, R. J., van den Oever, N., Franck, J., Longuespee, R., Wisztorski, M., Salzet, M., Deelder, A. M., Fournier, I., and McDonnell, L. A. MALDI imaging and profiling MS of higher mass proteins from tissue, J Am Soc Mass Spectrom 21, 1922–1929.

    Google Scholar 

Download references

Acknowledgements

Research from our laboratories mentioned here has been supported by grants from the Centre National de la Recherche Scientifique Département de la politique industrielle (to MS and IF), Ministère de L’Education Nationale, de L’Enseignement Supérieur et de la Recherche, Agence National de la recherche (to IF), ARCIR Region Nord Pas de Calais (to IF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Salzet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Salzet, M., Mériaux, C., Franck, J., Wistorski, M., Fournier, I. (2012). MALDI Imaging Technology Application in Neurosciences: From History to Perspectives. In: Karamanos, Y. (eds) Expression Profiling in Neuroscience. Neuromethods, vol 64. Humana Press. https://doi.org/10.1007/978-1-61779-448-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-448-3_11

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-447-6

  • Online ISBN: 978-1-61779-448-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics