Advertisement

Mapping Protein–DNA and Protein–Protein Interactions of ATP-Dependent Chromatin Remodelers

  • Swetansu K. Hota
  • Mekonnen Lemma Dechassa
  • Punit Prasad
  • Blaine BartholomewEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 809)

Abstract

Chromatin plays a key regulatory role in several DNA-dependent processes as it regulates DNA access to different protein factors. Several multisubunit protein complexes interact, modify, or mobilize nucleo-somes: the basic unit of chromatin, from its original location in an ATP-dependent manner to facilitate processes, such as transcription, replication, repair, and recombination. Knowledge of the interactions of chromatin remodelers with nucleosomes is a crucial requirement to understand the mechanism of chromatin remodeling. Here, we describe several methods to analyze the interactions of multisubunit chromatin-remodeling enzymes with nucleosomes.

Key words

Nucleosome Chromatin remodeling SWI/SNF ISW2 DNA–protein interactions DNA and histone cross-linking DNA footprinting 

References

  1. 1.
    Clapier, C. R. and Cairns, B. R. (2009) The biology of chromatin remodeling complexes. Annu Rev Biochem. 78 273–304.PubMedCrossRefGoogle Scholar
  2. 2.
    Gangaraju, V. K. and Bartholomew, B. (2007) Mechanisms of ATP dependent chromatin remodeling. Mutat Res. 618 3–17.PubMedCrossRefGoogle Scholar
  3. 3.
    Kagalwala, M. N., Glaus, B. J., Dang, W., Zofall, M. and Bartholomew, B. (2004) Topography of the ISW2-nucleosome complex: insights into nucleosome spacing and chromatin remodeling. EMBO J. 23 2092–2104.PubMedCrossRefGoogle Scholar
  4. 4.
    Dechassa, M. L., Sabri, A., Pondugula, S., Kassabov, S. R., Chatterjee, N., Kladde, M. P. and Bartholomew, B. (2010) SWI/SNF has intrinsic nucleosome disassembly activity that is dependent on adjacent nucleosomes. Mol Cell. 38 590–602.PubMedCrossRefGoogle Scholar
  5. 5.
    Mizuguchi, G., Shen, X., Landry, J., Wu, W. H., Sen, S. and Wu, C. (2004) ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex. Science. 303 343–348.PubMedCrossRefGoogle Scholar
  6. 6.
    Sengupta, S. M., VanKanegan, M., Persinger, J., Logie, C., Cairns, B. R., Peterson, C. L. and Bartholomew, B. (2001) The interactions of yeast SWI/SNF and RSC with the nucleosome before and after chromatin remodeling. J Biol Chem. 276 12636–12644.PubMedGoogle Scholar
  7. 7.
    Datwyler, S. A. and Meares, C. F. (2001) Artificial iron-dependent proteases. Met Ions Biol Syst. 38 213–254.PubMedGoogle Scholar
  8. 8.
    Schmidt, B. D. and Meares, C. F. (2002) Proteolytic DNA for mapping protein-DNA interactions. Biochemistry. 41 4186–4192.PubMedCrossRefGoogle Scholar
  9. 9.
    Traviglia, S. L., Datwyler, S. A. and Meares, C. F. (1999) Mapping protein-protein interactions with a library of tethered cutting reagents: the binding site of sigma 70 on Escherichia coli RNA polymerase. Biochemistry. 38 4259–4265.PubMedCrossRefGoogle Scholar
  10. 10.
    Chen, H. T. and Hahn, S. (2003) Binding of TFIIB to RNA polymerase II: Mapping the binding site for the TFIIB zinc ribbon domain within the preinitiation complex. Mol Cell. 12 437–447.PubMedCrossRefGoogle Scholar
  11. 11.
    Lowary, P. T. and Widom, J. (1998) New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning. J Mol Biol. 276 19–42.PubMedCrossRefGoogle Scholar
  12. 12.
    Luger, K., Rechsteiner, T. J. and Richmond, T. J. (1999) Expression and purification of recombinant histones and nucleosome reconstitution. Methods Mol Biol. 119 1–16.PubMedGoogle Scholar
  13. 13.
    Shen, F., Triezenberg, S. J., Hensley, P., Porter, D. and Knutson, J. R. (1996) Critical amino acids in the transcriptional activation domain of the herpesvirus protein VP16 are solvent-exposed in highly mobile protein segments. An intrinsic fluorescence study. J Biol Chem. 271 4819–4826.Google Scholar
  14. 14.
    Gangaraju, V. K., Prasad, P., Srour, A., Kagalwala, M. N. and Bartholomew, B. (2009) Conformational changes associated with template commitment in ATP-dependent chromatin remodeling by ISW2. Mol Cell. 35 58–69.PubMedCrossRefGoogle Scholar
  15. 15.
    Persinger, J. and Bartholomew, B. (2009) Site-directed DNA crosslinking of large multisubunit protein-DNA complexes. Methods Mol Biol. 543 453–474.PubMedCrossRefGoogle Scholar
  16. 16.
    Bartholomew, B., Kassavetis, G. A., Braun, B. R. and Geiduschek, E. P. (1990) The subunit structure of Saccharomyces cerevisiae transcription factor IIIC probed with a novel photocrosslinking reagent. EMBO J. 9 2197–2205.PubMedGoogle Scholar
  17. 17.
    Tate, J. J., Persinger, J. and Bartholomew, B. (1998) Survey of four different photoreactive moieties for DNA photoaffinity labeling of yeast RNA polymerase III transcription complexes. Nucleic Acids Res. 26 1421–1426.PubMedCrossRefGoogle Scholar
  18. 18.
    Lannutti, B. J., Persinger, J. and Bartholomew, B. (1996) Probing the protein-DNA contacts of a yeast RNA polymerase III transcription complex in a crude extract: solid phase synthesis of DNA photoaffinity probes containing a novel photoreactive deoxycytidine analog. Biochemistry. 35 9821–9831.PubMedCrossRefGoogle Scholar
  19. 19.
    Zofall, M. and Bartholomew, B. (2000) Two novel dATP analogs for DNA photoaffinity labeling. Nucleic Acids Res. 28 4382–4390.PubMedCrossRefGoogle Scholar
  20. 20.
    Persinger, J. and Bartholomew, B. (1996) Mapping the contacts of yeast TFIIIB and RNA polymerase III at various distances from the major groove of DNA by DNA photoaffinity labeling. J Biol Chem. 271 33039–33046.PubMedCrossRefGoogle Scholar
  21. 21.
    Gangaraju, V. K. and Bartholomew, B. (2007) Dependency of ISW1a chromatin remodeling on extranucleosomal DNA. Mol Cell Biol. 27 3217–3225.PubMedCrossRefGoogle Scholar
  22. 22.
    Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F. and Richmond, T. J. (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature. 389 251–260.PubMedCrossRefGoogle Scholar
  23. 23.
    Ebright, Y. W., Chen, Y., Kim, Y. and Ebright, R. H. (1996) S-[2-(4-azidosalicylamido)ethylthio)-2-thiopyridine: radioiodinatable, cleavable, photoactivatible cross-linking agent. Bioconjug Chem. 7 380–384.PubMedCrossRefGoogle Scholar
  24. 24.
    Chizzonite, R., Truitt, T., Desai, B. B., Nunes, P., Podlaski, F. J., Stern, A. S. and Gately, M. K. (1992) IL-12 receptor. I. Characterization of the receptor on phytohemagglutinin-activated human lymphoblasts. J Immunol. 148 3117–3124.Google Scholar
  25. 25.
    Chizzonite, R., Truitt, T., Podlaski, F. J., Wolitzky, A. G., Quinn, P. M., Nunes, P., Stern, A. S. and Gately, M. K. (1991) IL-12: monoclonal antibodies specific for the 40-kDa subunit block receptor binding and biologic activity on activated human lymphoblasts. J Immunol. 147 1548–1556.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Swetansu K. Hota
    • 1
  • Mekonnen Lemma Dechassa
    • 1
  • Punit Prasad
    • 1
  • Blaine Bartholomew
    • 1
    Email author
  1. 1.Southern Illinois University School of MedicineCarbondaleUSA

Personalised recommendations