Computational Analysis of Promoter Elements and Chromatin Features in Yeast

  • John J. WyrickEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 809)


Regulatory elements in promoter sequences typically function as binding sites for transcription factor proteins and thus are critical determinants of gene transcription. There is growing evidence that chromatin features, such as histone modifications or nucleosome positions, also have important roles in transcriptional regulation. Recent functional genomics and computational studies have yielded extensive datasets cataloging transcription factor binding sites (TFBS) and chromatin features, such as nucleosome positions, throughout the yeast genome. However, much of this data can be difficult to navigate or analyze efficiently. This chapter describes practical methods for the visualization, data mining, and statistical analysis of yeast promoter elements and chromatin features using two Web-accessible bioinformatics databases: ChromatinDB and Ceres.

Key words

Transcription factor binding sites TFBS Nucleosome positions Histone modifications Data visualization Data mining Statistical analysis Saccharomyces cerevisiae 


  1. 1.
    Harbison CT, Gordon DB, Lee TI, Rinaldi NJ, Macisaac KD, Danford TW et al. (2004) Transcriptional regulatory code of a eukaryotic genome. Nature 431:99–104Google Scholar
  2. 2.
    Lee TI, Rinaldi NJ, Robert F, Odom DT, Bar-Joseph Z, Gerber GK et al. (2002) Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298:799–804Google Scholar
  3. 3.
    Cliften P, Sudarsanam P, Desikan A, Fulton L, Fulton B, Majors J et al. (2003) Finding functional features in Saccharomyces genomes by phylogenetic footprinting. Science 301:71–76Google Scholar
  4. 4.
    Kellis M, Patterson N, Endrizzi M, Birren B, Lander ES (2003) Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature 423:241–254Google Scholar
  5. 5.
    MacIsaac KD, Wang T, Gordon DB, Gifford DK, Stormo GD, Fraenkel E (2006) An improved map of conserved regulatory sites for Saccharomyces cerevisiae. BMC Bioinformatics 7:113Google Scholar
  6. 6.
    Zhu J, Zhang MQ (1999) SCPD: a promoter database of the yeast Saccharomyces cerevisiae. Bioinformatics 15:607–611Google Scholar
  7. 7.
    Tsai HK, Chou MY, Shih CH, Huang GT, Chang TH, Li WH (2007) MYBS: a comprehensive web server for mining transcription factor binding sites in yeast. Nucleic Acids Res 35:W221–226Google Scholar
  8. 8.
    Monteiro PT, Mendes ND, Teixeira MC, d’Orey S, Tenreiro S, Mira NP et al. (2008) YEASTRACT-DISCOVERER: new tools to improve the analysis of transcriptional regulatory associations in Saccharomyces cerevisiae. Nucleic Acids Res 36:D132–136Google Scholar
  9. 9.
    Teixeira MC, Monteiro P, Jain P, Tenreiro S, Fernandes AR, Mira NP et al. (2006) The YEASTRACT database: a tool for the analysis of transcription regulatory associations in Saccharomyces cerevisiae. Nucleic Acids Res 34:D446–451Google Scholar
  10. 10.
    Li B, Carey M, Workman JL (2007) The role of chromatin during transcription. Cell 128:707–719Google Scholar
  11. 11.
    Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705Google Scholar
  12. 12.
    Kurdistani SK, Grunstein M (2003) Histone acetylation and deacetylation in yeast. Nat Rev Mol Cell Biol 4:276–284Google Scholar
  13. 13.
    Shilatifard A (2006) Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression. Annu Rev Biochem 75:243–269Google Scholar
  14. 14.
    Rando OJ, Ahmad K (2007) Rules and regulation in the primary structure of chromatin. Curr Opin Cell Biol 19:250–256Google Scholar
  15. 15.
    Yuan GC, Liu YJ, Dion MF, Slack MD, Wu LF, Altschuler SJ et al. (2005) Genome-scale identification of nucleosome positions in S. cerevisiae. Science 309:626–630Google Scholar
  16. 16.
    Rando OJ (2006) Chromatin structure in the genomics era. Trends Genet Google Scholar
  17. 17.
    Rando OJ, Chang HY (2009) Genome-wide views of chromatin structure. Annu Rev Biochem 78:245–271Google Scholar
  18. 18.
    Lee W, Tillo D, Bray N, Morse RH, Davis RW, Hughes TR et al. (2007) A high-resolution atlas of nucleosome occupancy in yeast. Nat Genet 39:1235–1244Google Scholar
  19. 19.
    Narlikar L, Gordan R, Hartemink AJ (2007) A nucleosome-guided map of transcription factor binding sites in yeast. PLoS Comput Biol 3:e215Google Scholar
  20. 20.
    Morris RT, O’Connor TR, Wyrick JJ (2010) Ceres: software for the integrated analysis of transcription factor binding sites and nucleosome positions in Saccharomyces cerevisiae. Bioinformatics 26:168–174Google Scholar
  21. 21.
    Kim HD, O’Shea EK (2008) A quantitative model of transcription factor-activated gene expression. Nat Struct Mol Biol 15:1192–1198Google Scholar
  22. 22.
    Lam FH, Steger DJ, O’Shea EK (2008) Chromatin decouples promoter threshold from dynamic range. Nature 453:246–250Google Scholar
  23. 23.
    Robyr D, Suka Y, Xenarios I, Kurdistani SK, Wang A, Suka N et al. (2002) Microarray deacetylation maps determine genome-wide functions for yeast histone deacetylases. Cell 109:437–446Google Scholar
  24. 24.
    Bernstein BE, Humphrey EL, Erlich RL, Schneider R, Bouman P, Liu JS et al. (2002) Methylation of histone H3 Lys 4 in coding regions of active genes. Proc Natl Acad Sci USA 99:8695–8700Google Scholar
  25. 25.
    Kurdistani SK, Tavazoie S, Grunstein M (2004) Mapping global histone acetylation patterns to gene expression. Cell 117:721–733Google Scholar
  26. 26.
    Rao B, Shibata Y, Strahl BD, Lieb JD (2005) Dimethylation of histone H3 at lysine 36 demarcates regulatory and nonregulatory chromatin genome-wide. Mol Cell Biol 25:9447–9459Google Scholar
  27. 27.
    Xu F, Zhang K, Grunstein M (2005) Acetylation in histone H3 globular domain regulates gene expression in yeast. Cell 121:375–385Google Scholar
  28. 28.
    Pokholok DK, Harbison CT, Levine S, Cole M, Hannett NM, Lee TI et al. (2005) Genome-wide map of nucleosome acetylation and methylation in yeast. Cell 122:517–527Google Scholar
  29. 29.
    Millar CB, Grunstein M (2006) Genome-wide patterns of histone modifications in yeast. Nat Rev Mol Cell Biol 7:657–666Google Scholar
  30. 30.
    Millar CB, Xu F, Zhang K, Grunstein M (2006) Acetylation of H2AZ Lys 14 is associated with genome-wide gene activity in yeast. Genes Dev 20:711–722Google Scholar
  31. 31.
    Shivaswamy S, Bhinge A, Zhao Y, Jones S, Hirst M, Iyer VR (2008) Dynamic remodeling of individual nucleosomes across a eukaryotic genome in response to transcriptional perturbation. PLoS Biol 6:e65Google Scholar
  32. 32.
    Mavrich TN, Ioshikhes IP, Venters BJ, Jiang C, Tomsho LP, Qi J et al. (2008) A barrier nucleosome model for statistical positioning of nucleosomes throughout the yeast genome. Genome Res 18:1073–1083Google Scholar
  33. 33.
    Kaplan N, Moore IK, Fondufe-Mittendorf Y, Gossett AJ, Tillo D, Field Y et al. (2009) The DNA-encoded nucleosome organization of a eukaryotic genome. Nature 458:362–366Google Scholar
  34. 34.
    Zawadzki KA, Morozov AV, Broach JR (2009) Chromatin-dependent transcription factor accessibility rather than nucleosome remodeling predominates during global transcriptional restructuring in Saccharomyces cerevisiae. Mol Biol Cell 20:3503–3513Google Scholar
  35. 35.
    Weiner A, Hughes A, Yassour M, Rando OJ, Friedman N (2010) High-resolution nucleosome mapping reveals transcription-dependent promoter packaging. Genome Res 20:90–100Google Scholar
  36. 36.
    Whitehouse I, Rando OJ, Delrow J, Tsukiyama T (2007) Chromatin remodelling at promoters suppresses antisense transcription. Nature 450:1031–1035Google Scholar
  37. 37.
    O’Connor TR, Wyrick JJ (2007) ChromatinDB: a database of genome-wide histone modification patterns for Saccharomyces cerevisiae. Bioinformatics 23:1828–1830Google Scholar
  38. 38.
    Bram RJ, Kornberg RD (1985) Specific protein binding to far upstream activating sequences in polymerase II promoters. Proc Natl Acad Sci USA 82:43–47Google Scholar
  39. 39.
    Giniger E, Varnum SM, Ptashne M (1985) Specific DNA binding of GAL4, a positive regulatory protein of yeast. Cell 40:767–774Google Scholar
  40. 40.
    Bowdish KS, Mitchell AP (1993) Bipartite structure of an early meiotic upstream activation sequence from Saccharomyces cerevisiae. Mol Cell Biol 13:2172–2181Google Scholar
  41. 41.
    Strich R, Surosky RT, Steber C, Dubois E, Messenguy F, Esposito RE (1994) UME6 is a key regulator of nitrogen repression and meiotic development. Genes Dev 8:796–810Google Scholar
  42. 42.
    Cherry JM, Adler C, Ball C, Chervitz SA, Dwight SS, Hester ET et al. (1998) SGD: Saccharomyces Genome Database. Nucleic Acids Res 26:73–79Google Scholar
  43. 43.
    Engel SR, Balakrishnan R, Binkley G, Christie KR, Costanzo MC, Dwight SS et al. (2010) Saccharomyces Genome Database provides mutant phenotype data. Nucleic Acids Res 38:D433–436Google Scholar
  44. 44.
    Williams RM, Primig M, Washburn BK, Winzeler EA, Bellis M, Sarrauste de Menthiere C et al. (2002) The Ume6 regulon coordinates metabolic and meiotic gene expression in yeast. Proc Natl Acad Sci USA 99:13431–13436Google Scholar
  45. 45.
    Pak J, Segall J (2002) Regulation of the premiddle and middle phases of expression of the NDT80 gene during sporulation of Saccharomyces cerevisiae. Mol Cell Biol 22:6417–6429Google Scholar
  46. 46.
    Tice-Baldwin K, Fink GR, Arndt KT (1989) BAS1 has a Myb motif and activates HIS4 transcription only in combination with BAS2. Science 246:931–935Google Scholar
  47. 47.
    Daignan-Fornier B, Fink GR (1992) Coregulation of purine and histidine biosynthesis by the transcriptional activators BAS1 and BAS2. Proc Natl Acad Sci USA 89:6746–6750Google Scholar
  48. 48.
    Denis V, Boucherie H, Monribot C, Daignan-Fornier B (1998) Role of the myb-like protein bas1p in Saccharomyces cerevisiae: a proteome analysis. Mol Microbiol 30:557–566Google Scholar
  49. 49.
    Mannhaupt G, Schnall R, Karpov V, Vetter I, Feldmann H (1999) Rpn4p acts as a transcription factor by binding to PACE, a nonamer box found upstream of 26 S proteasomal and other genes in yeast. FEBS Lett 450:27–34Google Scholar
  50. 50.
    Xie Y, Varshavsky A (2001) RPN4 is a ligand, substrate, and transcriptional regulator of the 26S proteasome: a negative feedback circuit. Proc Natl Acad Sci USA 98:3056–3061Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.School of Molecular Biosciences and Center for Reproductive BiologyWashington State UniversityPullmanUSA

Personalised recommendations