Skip to main content

Computational Analysis of Promoter Elements and Chromatin Features in Yeast

  • Protocol
  • First Online:
Transcriptional Regulation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 809))

  • 5953 Accesses

Abstract

Regulatory elements in promoter sequences typically function as binding sites for transcription factor proteins and thus are critical determinants of gene transcription. There is growing evidence that chromatin features, such as histone modifications or nucleosome positions, also have important roles in transcriptional regulation. Recent functional genomics and computational studies have yielded extensive datasets cataloging transcription factor binding sites (TFBS) and chromatin features, such as nucleosome positions, throughout the yeast genome. However, much of this data can be difficult to navigate or analyze efficiently. This chapter describes practical methods for the visualization, data mining, and statistical analysis of yeast promoter elements and chromatin features using two Web-accessible bioinformatics databases: ChromatinDB and Ceres.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harbison CT, Gordon DB, Lee TI, Rinaldi NJ, Macisaac KD, Danford TW et al. (2004) Transcriptional regulatory code of a eukaryotic genome. Nature 431:99–104

    Google Scholar 

  2. Lee TI, Rinaldi NJ, Robert F, Odom DT, Bar-Joseph Z, Gerber GK et al. (2002) Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298:799–804

    Google Scholar 

  3. Cliften P, Sudarsanam P, Desikan A, Fulton L, Fulton B, Majors J et al. (2003) Finding functional features in Saccharomyces genomes by phylogenetic footprinting. Science 301:71–76

    Google Scholar 

  4. Kellis M, Patterson N, Endrizzi M, Birren B, Lander ES (2003) Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature 423:241–254

    Google Scholar 

  5. MacIsaac KD, Wang T, Gordon DB, Gifford DK, Stormo GD, Fraenkel E (2006) An improved map of conserved regulatory sites for Saccharomyces cerevisiae. BMC Bioinformatics 7:113

    Google Scholar 

  6. Zhu J, Zhang MQ (1999) SCPD: a promoter database of the yeast Saccharomyces cerevisiae. Bioinformatics 15:607–611

    Google Scholar 

  7. Tsai HK, Chou MY, Shih CH, Huang GT, Chang TH, Li WH (2007) MYBS: a comprehensive web server for mining transcription factor binding sites in yeast. Nucleic Acids Res 35:W221–226

    Google Scholar 

  8. Monteiro PT, Mendes ND, Teixeira MC, d’Orey S, Tenreiro S, Mira NP et al. (2008) YEASTRACT-DISCOVERER: new tools to improve the analysis of transcriptional regulatory associations in Saccharomyces cerevisiae. Nucleic Acids Res 36:D132–136

    Google Scholar 

  9. Teixeira MC, Monteiro P, Jain P, Tenreiro S, Fernandes AR, Mira NP et al. (2006) The YEASTRACT database: a tool for the analysis of transcription regulatory associations in Saccharomyces cerevisiae. Nucleic Acids Res 34:D446–451

    Google Scholar 

  10. Li B, Carey M, Workman JL (2007) The role of chromatin during transcription. Cell 128:707–719

    Google Scholar 

  11. Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    Google Scholar 

  12. Kurdistani SK, Grunstein M (2003) Histone acetylation and deacetylation in yeast. Nat Rev Mol Cell Biol 4:276–284

    Google Scholar 

  13. Shilatifard A (2006) Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression. Annu Rev Biochem 75:243–269

    Google Scholar 

  14. Rando OJ, Ahmad K (2007) Rules and regulation in the primary structure of chromatin. Curr Opin Cell Biol 19:250–256

    Google Scholar 

  15. Yuan GC, Liu YJ, Dion MF, Slack MD, Wu LF, Altschuler SJ et al. (2005) Genome-scale identification of nucleosome positions in S. cerevisiae. Science 309:626–630

    Google Scholar 

  16. Rando OJ (2006) Chromatin structure in the genomics era. Trends Genet

    Google Scholar 

  17. Rando OJ, Chang HY (2009) Genome-wide views of chromatin structure. Annu Rev Biochem 78:245–271

    Google Scholar 

  18. Lee W, Tillo D, Bray N, Morse RH, Davis RW, Hughes TR et al. (2007) A high-resolution atlas of nucleosome occupancy in yeast. Nat Genet 39:1235–1244

    Google Scholar 

  19. Narlikar L, Gordan R, Hartemink AJ (2007) A nucleosome-guided map of transcription factor binding sites in yeast. PLoS Comput Biol 3:e215

    Google Scholar 

  20. Morris RT, O’Connor TR, Wyrick JJ (2010) Ceres: software for the integrated analysis of transcription factor binding sites and nucleosome positions in Saccharomyces cerevisiae. Bioinformatics 26:168–174

    Google Scholar 

  21. Kim HD, O’Shea EK (2008) A quantitative model of transcription factor-activated gene expression. Nat Struct Mol Biol 15:1192–1198

    Google Scholar 

  22. Lam FH, Steger DJ, O’Shea EK (2008) Chromatin decouples promoter threshold from dynamic range. Nature 453:246–250

    Google Scholar 

  23. Robyr D, Suka Y, Xenarios I, Kurdistani SK, Wang A, Suka N et al. (2002) Microarray deacetylation maps determine genome-wide functions for yeast histone deacetylases. Cell 109:437–446

    Google Scholar 

  24. Bernstein BE, Humphrey EL, Erlich RL, Schneider R, Bouman P, Liu JS et al. (2002) Methylation of histone H3 Lys 4 in coding regions of active genes. Proc Natl Acad Sci USA 99:8695–8700

    Google Scholar 

  25. Kurdistani SK, Tavazoie S, Grunstein M (2004) Mapping global histone acetylation patterns to gene expression. Cell 117:721–733

    Google Scholar 

  26. Rao B, Shibata Y, Strahl BD, Lieb JD (2005) Dimethylation of histone H3 at lysine 36 demarcates regulatory and nonregulatory chromatin genome-wide. Mol Cell Biol 25:9447–9459

    Google Scholar 

  27. Xu F, Zhang K, Grunstein M (2005) Acetylation in histone H3 globular domain regulates gene expression in yeast. Cell 121:375–385

    Google Scholar 

  28. Pokholok DK, Harbison CT, Levine S, Cole M, Hannett NM, Lee TI et al. (2005) Genome-wide map of nucleosome acetylation and methylation in yeast. Cell 122:517–527

    Google Scholar 

  29. Millar CB, Grunstein M (2006) Genome-wide patterns of histone modifications in yeast. Nat Rev Mol Cell Biol 7:657–666

    Google Scholar 

  30. Millar CB, Xu F, Zhang K, Grunstein M (2006) Acetylation of H2AZ Lys 14 is associated with genome-wide gene activity in yeast. Genes Dev 20:711–722

    Google Scholar 

  31. Shivaswamy S, Bhinge A, Zhao Y, Jones S, Hirst M, Iyer VR (2008) Dynamic remodeling of individual nucleosomes across a eukaryotic genome in response to transcriptional perturbation. PLoS Biol 6:e65

    Google Scholar 

  32. Mavrich TN, Ioshikhes IP, Venters BJ, Jiang C, Tomsho LP, Qi J et al. (2008) A barrier nucleosome model for statistical positioning of nucleosomes throughout the yeast genome. Genome Res 18:1073–1083

    Google Scholar 

  33. Kaplan N, Moore IK, Fondufe-Mittendorf Y, Gossett AJ, Tillo D, Field Y et al. (2009) The DNA-encoded nucleosome organization of a eukaryotic genome. Nature 458:362–366

    Google Scholar 

  34. Zawadzki KA, Morozov AV, Broach JR (2009) Chromatin-dependent transcription factor accessibility rather than nucleosome remodeling predominates during global transcriptional restructuring in Saccharomyces cerevisiae. Mol Biol Cell 20:3503–3513

    Google Scholar 

  35. Weiner A, Hughes A, Yassour M, Rando OJ, Friedman N (2010) High-resolution nucleosome mapping reveals transcription-dependent promoter packaging. Genome Res 20:90–100

    Google Scholar 

  36. Whitehouse I, Rando OJ, Delrow J, Tsukiyama T (2007) Chromatin remodelling at promoters suppresses antisense transcription. Nature 450:1031–1035

    Google Scholar 

  37. O’Connor TR, Wyrick JJ (2007) ChromatinDB: a database of genome-wide histone modification patterns for Saccharomyces cerevisiae. Bioinformatics 23:1828–1830

    Google Scholar 

  38. Bram RJ, Kornberg RD (1985) Specific protein binding to far upstream activating sequences in polymerase II promoters. Proc Natl Acad Sci USA 82:43–47

    Google Scholar 

  39. Giniger E, Varnum SM, Ptashne M (1985) Specific DNA binding of GAL4, a positive regulatory protein of yeast. Cell 40:767–774

    Google Scholar 

  40. Bowdish KS, Mitchell AP (1993) Bipartite structure of an early meiotic upstream activation sequence from Saccharomyces cerevisiae. Mol Cell Biol 13:2172–2181

    Google Scholar 

  41. Strich R, Surosky RT, Steber C, Dubois E, Messenguy F, Esposito RE (1994) UME6 is a key regulator of nitrogen repression and meiotic development. Genes Dev 8:796–810

    Google Scholar 

  42. Cherry JM, Adler C, Ball C, Chervitz SA, Dwight SS, Hester ET et al. (1998) SGD: Saccharomyces Genome Database. Nucleic Acids Res 26:73–79

    Google Scholar 

  43. Engel SR, Balakrishnan R, Binkley G, Christie KR, Costanzo MC, Dwight SS et al. (2010) Saccharomyces Genome Database provides mutant phenotype data. Nucleic Acids Res 38:D433–436

    Google Scholar 

  44. Williams RM, Primig M, Washburn BK, Winzeler EA, Bellis M, Sarrauste de Menthiere C et al. (2002) The Ume6 regulon coordinates metabolic and meiotic gene expression in yeast. Proc Natl Acad Sci USA 99:13431–13436

    Google Scholar 

  45. Pak J, Segall J (2002) Regulation of the premiddle and middle phases of expression of the NDT80 gene during sporulation of Saccharomyces cerevisiae. Mol Cell Biol 22:6417–6429

    Google Scholar 

  46. Tice-Baldwin K, Fink GR, Arndt KT (1989) BAS1 has a Myb motif and activates HIS4 transcription only in combination with BAS2. Science 246:931–935

    Google Scholar 

  47. Daignan-Fornier B, Fink GR (1992) Coregulation of purine and histidine biosynthesis by the transcriptional activators BAS1 and BAS2. Proc Natl Acad Sci USA 89:6746–6750

    Google Scholar 

  48. Denis V, Boucherie H, Monribot C, Daignan-Fornier B (1998) Role of the myb-like protein bas1p in Saccharomyces cerevisiae: a proteome analysis. Mol Microbiol 30:557–566

    Google Scholar 

  49. Mannhaupt G, Schnall R, Karpov V, Vetter I, Feldmann H (1999) Rpn4p acts as a transcription factor by binding to PACE, a nonamer box found upstream of 26 S proteasomal and other genes in yeast. FEBS Lett 450:27–34

    Google Scholar 

  50. Xie Y, Varshavsky A (2001) RPN4 is a ligand, substrate, and transcriptional regulator of the 26S proteasome: a negative feedback circuit. Proc Natl Acad Sci USA 98:3056–3061

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J. Wyrick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Wyrick, J.J. (2012). Computational Analysis of Promoter Elements and Chromatin Features in Yeast. In: Vancura, A. (eds) Transcriptional Regulation. Methods in Molecular Biology, vol 809. Springer, New York, NY. https://doi.org/10.1007/978-1-61779-376-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-376-9_15

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-61779-375-2

  • Online ISBN: 978-1-61779-376-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics