Skip to main content

Genome-Wide In Vivo Cross-linking of Sequence-Specific Transcription Factors

  • Protocol
  • First Online:
Transcriptional Regulation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 809))

Abstract

Immunoprecipitation of cross-linked chromatin in combination with microarrays (ChIP-chip) or ultra high-throughput sequencing (ChIP-seq) is widely used to map genome-wide in vivo transcription factor binding. Both methods employ initial steps of in vivo cross-linking, chromatin isolation, DNA fragmentation, and immunoprecipitation. For ChIP-chip, the immunoprecipitated DNA samples are then amplified, labeled, and hybridized to DNA microarrays. For ChIP-seq, the immunoprecipitated DNA is prepared for a sequencing library, and then the library DNA fragments are sequenced using ultra high-throughput sequencing platform. The protocols described here have been developed for ChIP-chip and ChIP-seq analysis of sequence-specific transcription factor binding in Drosophila embryos. A series of controls establish that these protocols have high sensitivity and reproducibility and provide a quantitative measure of relative transcription factor occupancy. The quantitative nature of the assay is important because regulatory transcription factors bind to highly overlapping sets of thousands of genomic regions and the unique regulatory specificity of each factor is determined by relative moderate differences in occupancy between factors at commonly bound regions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Biggin MD, Tjian R (2001) Transcriptional regulation in Drosophila: the post-genome challenge. Funct Integr Genomics. 1, 223–234.

    Article  PubMed  CAS  Google Scholar 

  2. Gilmour, D. S., Rougvie, A. E., and Lis, J. T. (1991) Protein-DNA cross-linking as a means to determine the distribution of proteins on DNA in vivo. Meth. Cell Biol. 35, 369–381.

    Article  CAS  Google Scholar 

  3. Carr, A. and Biggin, M.D. (1999) An in vivo UV crosslinking assay that detects DNA binding by sequence-specific transcription factors. Methods Mol Biol. 119, 497–508.

    PubMed  CAS  Google Scholar 

  4. Orlando, V. (2000) Mapping chromosomal proteins in vivo by formaldehyde-crosslinked-chromatin immunoprecipitation, Trends Biochem. Sci. 25, 99–104.

    CAS  Google Scholar 

  5. Ren, B., Robert, F., Wyrick, J.J., Aparicio, O., Jennings, E.G., Simon, I., Zeitlinger, J., Schreiber, J., Hannett, N., Kanin, E., Volkert, T.L., Wilson, C.J., Bell, S.P., and Young, R.A. (2000) Genome-wide location and function of DNA binding proteins. Science 290, 2306–9.

    Article  PubMed  CAS  Google Scholar 

  6. Iyer, V.R., Horak, C.E., Scafe, C.S., Botstein, D., Snyder, M., et al. (2001) Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF. Nature 409, 533-538.

    Article  PubMed  CAS  Google Scholar 

  7. Metzker, M.L. (2010) Sequencing technologies — the next generation. Nature Reviews Genetics 11, 31–46.

    Article  PubMed  CAS  Google Scholar 

  8. Johnson, D.S., Mortazavi, A., Myers, R.M.,and Wold, B. (2007) Genome-wide mapping of in vivo protein–DNA interactions. Science 316, 1497–1502.

    Article  PubMed  CAS  Google Scholar 

  9. Barski, A., Cuddapah, S., Cui, K., Roh, T.Y., D.E. Schones et al., (2007) High-resolution profiling of histone methylations in the human genome, Cell 129, 823–837.

    Article  PubMed  CAS  Google Scholar 

  10. Robertson, G., Hirst, M., Bainbridge, M., Bilenky, M., Zhao Y. et al. (2007) Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing, Nat. Methods 4, 651–657.

    CAS  Google Scholar 

  11. Toth, J., and Biggin, M.D. (2000) The specificity of protein-DNA crosslinking by formaldehyde: in vitro and in drosophila embryos. Nucleic Acids Res. 15, e4.

    Article  Google Scholar 

  12. Auerbach, R.K., Euskirchen, G., Rozowsky, J., Lamarre-Vincent, N., Moqtaderi, Z., et al. (2009) Mapping accessible chromatin regions using Sono-Seq. Proc Natl Acad Sci USA 106, 14926–14931.

    Article  PubMed  CAS  Google Scholar 

  13. Li, X.-Y., Thomas,S., Sabo, P.J., Eisen, M.B., Stamatoyannopoulos, J.A., and Biggin, M.D. (2011) The role of chromatin accessibility in directing the widespread, overlapping patterns of Drosophila transcription factor binding. Genome Biology. 12, R34.

    Google Scholar 

  14. Kaplan, T., Li, X.-Y., Sabo, P.J., Thomas, S., Stamatoyannopoulos, J.A., Biggin, M.D. , and Eisen, M.B. (2011) Predicting the Landscape of Transcription Factor Binding During Early Drosophila Development. PLoS Genet. 7, e1001290.

    Google Scholar 

  15. Li, X.-Y., Macarthur, S., Bourgon, R., Nix, D., Pollard, D.A., et al. (2008) Transcription Factors Bind Thousands of Active and Inactive Regions in the Drosophila Blastoderm. Plos Biol. 6, e27.

    Article  PubMed  Google Scholar 

  16. Macarthur, S., Li, X.-Y., Li, J., Brown, J.B., Chu, H.C., et al. (2009) Developmental roles of 21 Drosophila transcription factors are determined by quantitative differences in binding to an overlapping set of thousands of genomic regions. Genome Biol . 10, R80.

    Article  PubMed  Google Scholar 

  17. Bradley, R.K., Li, X.-Y., Trapnell, C., Davidson, S., Pachter, L., et al. (2010) Binding site turnover produces pervasive quantitative changes in transcription factor binding between closely related Drosophila species. Plos Biol. 8, e1000343.

    Article  PubMed  Google Scholar 

  18. Quail, M.A., Kozarewa, I., Smith, F., Scally, A., Stephens, P.J. et al., (2008) A large genome center’s improvements to the Illumina sequencing system, Nat. Methods 5, 1005–1010.

    CAS  Google Scholar 

  19. O’Geen, H., Nicolet, C.M., Blahnik, K., Green, R., Farnham, P.J. (2006) Comparison of sample preparation methods for ChIP-chip assays. Biotechniques 41, 577–80.

    Article  PubMed  Google Scholar 

  20. Li, H., Ruan, J. & Durbin, R. (2008) Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res. 18, 1851–1858.

    Article  PubMed  CAS  Google Scholar 

  21. Langmead B, Trapnell C, Pop M, Salzberg SL. (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25.

    Article  PubMed  Google Scholar 

  22. Ji, H., Jian, H., Ma., W., Johnson, D.S., Myers, R.M., and Wong, W,H. (2008) An integrated software system for analyzing CHIP-chip and ChIP-seq data. Nat. Biotechnol. 26, 1293–1300.

    Google Scholar 

  23. Rozowsky, J., Euskirchen, G., Auerbach, R.K., Zhang, Z.D., Gibson, T., Bjornson, R., Carriero, N., Snyder, M., Gerstein, M.B. (2009) PeakSeq enables systematic scoring of ChIP-seq experiments relative to controls. Nat Biotechnol. 27, 66–75.

    Article  PubMed  CAS  Google Scholar 

  24. Jothi, R., Cuddapah, S., Barski, A., Cui, K., Zhao, K. (2008) Genome-wide identification of in vivo protein-DNA binding sites from ChIP-Seq data. Nucleic Acids Res. 36, 5221–31.

    Article  PubMed  CAS  Google Scholar 

  25. Zhang ,Y., Liu, T., Meyer, C.A., Eeckhoute, J., Johnson, D.S., Bernstein, B.E., Nussbaum, C., Myers, R.M., Brown, M., Li, W., et al. (2008) Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137.

    Article  PubMed  Google Scholar 

  26. Tuteja, G., White, P., Schug, J., Kaestner, K.H.. (2009) Extracting transcription factor targets from ChIP-Seq data. Nucleic Acids Res. 37, e113.

    Article  PubMed  Google Scholar 

  27. Blahnik, K.R., Dou, L., O’Geen, H., McPhillips, T., Xu, X., Cao, A.R., Iyengar, S., Nicolet, C.M., Ludäscher, B., Korf, I., and Farnham, P.J. (2010) Sole-Search: an integrated analysis program for peak detection and functional annotation using ChIP-seq data. Nucleic Acids Res. 38, e13.

    Article  PubMed  Google Scholar 

  28. Carr. A., Biggin, M.D. (1999) A comparison of in vivo and in vitro DNA-binding specificities suggests a new model for homeoprotein DNA binding in Drosophila embryos. EMBO J. 18,1598–608.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark D. Biggin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Li, XY., Biggin, M.D. (2012). Genome-Wide In Vivo Cross-linking of Sequence-Specific Transcription Factors. In: Vancura, A. (eds) Transcriptional Regulation. Methods in Molecular Biology, vol 809. Springer, New York, NY. https://doi.org/10.1007/978-1-61779-376-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-376-9_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-61779-375-2

  • Online ISBN: 978-1-61779-376-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics