Skip to main content

Investigating Microtubule Dynamic Instability Using Microtubule-Targeting Agents

  • Protocol
  • First Online:
Microtubule Dynamics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 777))

Abstract

This chapter presents protocols not only used to investigate the effect of microtubule-targeting agents on microtubule dynamic instability parameters, but also their impact on loading +TIPs at microtubule plus ends. These agents can be considered either as drugs to analyze their pharmacological effects on microtubule dynamics and their subsequent functions or as tools to improve basic knowledge on the regulation of microtubule dynamics. Deciphering the complexes of proteins that regulate microtubule dynamic instability may lead to the discovery of new potential targets for therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Honore S, Pasquier E, Braguer D (2005) Understanding microtubule dynamics for improved cancer therapy. Cell Mol Life Sci 62(24):3039–56.

    Article  PubMed  CAS  Google Scholar 

  2. Poulain FE, Sobel A (2010) The microtubule network and neuronal morphogenesis: Dynamic and coordinated orchestration through multiple players. Mol Cell Neurosci 43(1):15–32.

    Article  PubMed  CAS  Google Scholar 

  3. Etienne-Manneville S (2010) From signaling pathways to microtubule dynamics: the key players. Curr Opin Cell Biol 22(1):104–11.

    Article  PubMed  CAS  Google Scholar 

  4. Jordan MA, Kamath K (2007) How do microtubule-targeted drugs work? An overview. Curr Cancer Drug Targets 7(8):730–42.

    Article  PubMed  CAS  Google Scholar 

  5. Akhmanova A, Stehbens SJ, Yap AS (2009) Touch, grasp, deliver and control: functional cross-talk between microtubules and cell adhesions. Traffic 10(3):268–74.

    Article  PubMed  CAS  Google Scholar 

  6. Zaoui K, Honoré S, Isnardon D, et al (2008) Memo-RhoA-mDia1 signaling controls microtubules, the actin network, and adhesion site formation in migrating cells. J Cell Biol 183(3):401–8.

    Article  PubMed  CAS  Google Scholar 

  7. Akhmanova A, Steinmetz MO (2008) Tracking the ends: a dynamic protein network controls the fate of microtubule tips. Nat Rev Mol Cell Biol 9(4):309–22.

    Article  PubMed  CAS  Google Scholar 

  8. Toso RJ, Jordan M.A, Farrell KW et al (1993) Kinetic stabilization of microtubule dynamic instability in vitro by vinblastine. Biochemistry 32(5):1285–93.

    Article  PubMed  CAS  Google Scholar 

  9. Honore S, Pasquier E, Braguer D (2005) Understanding microtubule dynamics for improved cancer therapy. Cell Mol Life Sci 62(24):3039–56.

    Article  PubMed  CAS  Google Scholar 

  10. Calligaris D, Verdier-Pinard P, Devred F et al (2010) Microtubule targeting agents: from biophysics to proteomics. Cell Mol Life Sci 67(7):1089–104.

    Article  PubMed  CAS  Google Scholar 

  11. Honore S, Kamath K, Braguer D et al (2004) Synergistic suppression of microtubule dynamics by discodermolide and paclitaxel in non-small cell lung carcinoma cells. Cancer Res 64(14):4957–64.

    Article  PubMed  CAS  Google Scholar 

  12. Honore S, Kamath K, Braguer D et al (2003) Suppression of microtubule dynamics by discodermolide by a novel mechanism is associated with mitotic arrest and inhibition of tumor cell proliferation. Mol Cancer Ther 2(12):1303–11.

    PubMed  CAS  Google Scholar 

  13. Smith JA, Wilson L, Azarenko O et al (2010) Eribulin binds at microtubule ends to a single site on tubulin to suppress dynamic instability. Biochemistry 49(6):1331–7.

    Article  PubMed  CAS  Google Scholar 

  14. Rovini A, Carré M, Bordet T et al (2010) Olesoxime prevents microtubule-targeting drug neurotoxicity: selective preservation of EB comets in differentiated neuronal cells. Biochem Pharmacol in press.

    Google Scholar 

  15. Pourroy B, Honoré S, Pasquier E et al (2006) Antiangiogenic concentrations of vinflunine increase the interphase microtubule dynamics and decrease the motility of endothelial cells. Cancer Res 66(6):3256–63.

    Article  PubMed  CAS  Google Scholar 

  16. Pasquier E, Honore S, Pourroy B et al (2005) Antiangiogenic concentrations of paclitaxel induce an increase in microtubule dynamics in endothelial cells but not in cancer cells. Cancer Res 65(6):2433–40.

    Article  PubMed  CAS  Google Scholar 

  17. Honoré S, Pagano A, Gauthier G et al (2008) Antiangiogenic vinflunine affects EB1 localization and microtubule targeting to adhesion sites. Mol Cancer Ther 7(7):2080–9.

    Article  PubMed  Google Scholar 

  18. Dhamodharan R, Jordan MA, Thrower D, Wilson L, Wadsworth P (1995) Vinblastine suppresses dynamics of individual microtubules in living interphase cells. Mol Biol Cell 6(9):1215–29.

    PubMed  CAS  Google Scholar 

  19. Kamath K, Jordan MA (2003) Suppression of microtubule dynamics by epothilone B is associated with mitotic arrest. Cancer Res 63(18):6026–31.

    PubMed  CAS  Google Scholar 

  20. Jordan MA, Kamath K, Manna T, Okouneva T, Miller HP, Davis C, Littlefield BA, Wilson L (2005). The primary antimitotic mechanism of action of the synthetic halichondrin E7389 is suppression of microtubule growth. Mol Cancer Ther 4(7):1086–95.

    Article  PubMed  CAS  Google Scholar 

  21. Pourroy B, Carré M, Honoré S, Bourgarel-Rey V, Kruczynski A, Briand C, Braguer D (2004). Low concentrations of vinflunine induce apoptosis in human SK-N-SH neuroblastoma cells through a postmitotic G1 arrest and a mitochondrial pathway. Mol Pharmacol 66(3):580–91.

    PubMed  CAS  Google Scholar 

  22. Mikhailov A, Gundersen GG. Relationship between microtubule dynamics and lamellipodium formation revealed by direct imaging of microtubules in cells treated with nocodazole or taxol. Cell Motil Cytoskeleton 41(4):325–40.

    Google Scholar 

  23. Skube SB, Chaverri JM, Goodson HV (2010) Effect of GFP tags on the localization of EB1 and EB1 fragments in vivo. Cytoskeleton 67(1):1–12.

    Article  PubMed  CAS  Google Scholar 

  24. Komarova Y, De Groot CO, Grigoriev I et al (2009) Mammalian end binding proteins control persistent microtubule growth. J Cell Biol 184(5):691–706.

    Article  PubMed  CAS  Google Scholar 

  25. Smal I, Grigoriev I, Akhmanova A et al (2009) Accurate estimation of microtubule dynamics using kymographs and variable-rate particle filters. Conf Proc IEEE Eng Med Biol Soc 721–1078:1012–5.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mary Ann Jordan and Leslie Wilson to introduce us in the “microtubule dynamics world” and Kathy Kamath for technical collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Honore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Honore, S., Braguer, D. (2011). Investigating Microtubule Dynamic Instability Using Microtubule-Targeting Agents. In: Straube, A. (eds) Microtubule Dynamics. Methods in Molecular Biology, vol 777. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-252-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-252-6_18

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-251-9

  • Online ISBN: 978-1-61779-252-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics