Advertisement

Detecting the Role of Arrestins in G Protein-Coupled Receptor Regulation

  • Laura M. BohnEmail author
  • Patricia H. McDonald
Protocol
Part of the Neuromethods book series (NM, volume 60)

Abstract

G protein-coupled receptors (GPCRs) are the major sites of actions for the body’s endogenous hormones and neurotransmitters which make them ideal targets for pharmaceutical development with the goal of either mimicking the normal transmitter response or tempering it. In recent years, targeting GPCRs has become more complicated as we realize that drug action at receptors is “context dependent” such that activation and inhibition is limited to the response evaluated and agonist and antagonist become terms that reflect a particular condition of the experimental or physiological output. Therefore, the composition of the receptor’s immediate environment may determine activation profiles as posttranslational modifications of the receptor or of the binding partners can ultimately lead to regulation of the responsiveness of the receptor.

Key words

Arrestins Receptor regulation Phosphorylation Translocation assay 

References

  1. 1.
    Lefkowitz RJ and Whalen EJ (2004) Beta-arrestins: traffic cops of cell signaling. Curr Opin Cell Biol 16:162–168.PubMedCrossRefGoogle Scholar
  2. 2.
    Lefkowitz RJ (2004) Historical review: a brief history and personal retrospective of seven-transmembrane receptors. Trends Pharmacol Sci 25:413–422.PubMedCrossRefGoogle Scholar
  3. 3.
    Gurevich EV, Benovic JL and Gurevich VV (2004) Arrestin2 expression selectively increases during neural differentiation. J Neurochem 91:1404–1416.PubMedCrossRefGoogle Scholar
  4. 4.
    Ahmed MR, Gurevich VV, Dalby KN et al (2008) Haloperidol and clozapine differentially affect the expression of arrestins, receptor kinases, and extracellular signal-regulated kinase activation. J Pharmacol Exp Ther 325:276–283.PubMedCrossRefGoogle Scholar
  5. 5.
    Violin JD, Ren XR and Lefkowitz RJ (2006) G-protein-coupled receptor kinase specificity for beta-arrestin recruitment to the beta2-adrenergic receptor revealed by fluorescence resonance energy transfer. J Biol Chem 281:20577–20588.PubMedCrossRefGoogle Scholar
  6. 6.
    Drake MT, Violin JD, Whalen EJ et al (2008) Beta-arrestin-biased agonism at the beta2-adrenergic receptor. J Biol Chem 283:5669–5676.PubMedCrossRefGoogle Scholar
  7. 7.
    Galandrin S and Bouvier M (2006) Distinct signaling profiles of beta1 and beta2 adrenergic receptor ligands toward adenylyl cyclase and mitogen-activated protein kinase reveals the pluridimensionality of efficacy. Mol Pharmacol 70:1575–1584.PubMedCrossRefGoogle Scholar
  8. 8.
    Zidar DA, Violin JD, Whalen EJ et al (2009) Selective engagement of G protein coupled receptor kinases (GRKs) encodes distinct functions of biased ligands. Proc Natl Acad Sci USA 106:9649–9654.PubMedCrossRefGoogle Scholar
  9. 9.
    Kohout TA, Lin, FS, Perry SJ et al (2001) Beta-arrestin 1 and 2 differentially regulate heptahelical receptor signaling and trafficking. Proc Natl Acad Sci USA 98:1601–1606.PubMedCrossRefGoogle Scholar
  10. 10.
    Kohout TA and Lefkowitz RJ (2003) Regulation of G protein-coupled receptor kinases and arrestins during receptor desensitization. Mol Pharmacol 63:9–18.PubMedCrossRefGoogle Scholar
  11. 11.
    Vines CM, Revankar CM, Maestas, DC et al (2003) N-formyl peptide receptors internalize but do not recycle in the absence of arrestins. J Biol Chem 278:41581–41584.PubMedCrossRefGoogle Scholar
  12. 12.
    DeFea KA, Zalevsky J, Thoma, MS et al (2000) Beta-arrestin-dependent endocytosis of proteinase-activated receptor 2 is required for intracellular targeting of activated ERK1/2. J Cell Biol 148:1267–1281.PubMedCrossRefGoogle Scholar
  13. 13.
    McDonald PH, Chow, CW, Miller WE et al (2000) Beta-arrestin 2: a receptor-regulated MAPK scaffold for the activation of JNK3. Science 290:1574–1577.PubMedCrossRefGoogle Scholar
  14. 14.
    Luttrell LM, Ferguson SS, Daaka Y et al (1999) Beta-arrestin-dependent formation of beta2 adrenergic receptor-Src protein kinase complexes. Science 283:655–661.PubMedCrossRefGoogle Scholar
  15. 15.
    Freedman NJ and Lefkowitz RJ (1996) Desensitization of G protein-coupled receptors. Recent Prog Horm Res 51:319–351.PubMedGoogle Scholar
  16. 16.
    Tohgo A, Choy EW, Getsy-Palmer D et al (2003) The stability of the G protein-coupled receptor-beta-arrestin interaction determines the mechanism and functional consequence of ERK activation. J Biol Chem 278:6258–6267.PubMedCrossRefGoogle Scholar
  17. 17.
    Barak LS, Warabi K, Feng X et al (1999) Real-time visualization of the cellular redistribution of G protein-coupled receptor kinase 2 and beta-arrestin 2 during homologous desensitization of the substance P receptor. J Biol Chem 274:7565–7569.PubMedCrossRefGoogle Scholar
  18. 18.
    Barak LS, Zhang J, Ferguson SS et al (1999) Signaling, desensitization, and trafficking of G protein-coupled receptors revealed by green fluorescent protein conjugates. Methods Enzymol 302:153–171.PubMedCrossRefGoogle Scholar
  19. 19.
    Oakley RH, Laporte SA, Holt JA et al (2000) Differential affinities of visual arrestin, beta arrestin1, and beta arrestin2 for G protein-coupled receptors delineate two major classes of receptors. J Biol Chem 275:17201–17210.PubMedCrossRefGoogle Scholar
  20. 20.
    Johnson EC, Bohn LM, Barak LS et al (2003) Identification of Drosophila neuropeptide receptors by G protein-coupled receptors-beta-arrestin2 interactions. J Biol Chem 278(52): 52172–52178.PubMedCrossRefGoogle Scholar
  21. 21.
    Johnson EC (2003) Identification and characterization of a G protein-coupled receptor for the neuropeptide proctolin in Drosophila melanogaster. Proc Natl Acad Sci USA 100:6198–6203.PubMedCrossRefGoogle Scholar
  22. 22.
    Oakley RH, Laporte SA, Holt JA et al (1999) Association of beta-arrestin with G protein-coupled receptors during clathrin-mediated endocytosis dictates the profile of receptor resensitization. J Biol Chem 274:32248–32257.PubMedCrossRefGoogle Scholar
  23. 23.
    Wilbanks AM, Laporte SA, Bohn LM et al (2002) Apparent loss-of-function mutant GPCRs revealed as constitutively desensitized receptors. Biochemistry 41:11981–11989.PubMedCrossRefGoogle Scholar
  24. 24.
    Claing A, Laporte SA, Caron MG et al (2002) Endocytosis of G protein-coupled receptors: roles of G protein-coupled receptor kinases and beta-arrestin proteins. Prog Neurobiol 66:61–79.PubMedCrossRefGoogle Scholar
  25. 25.
    Oakley RH, Hudson CC, Cruickshank RD et al (2002) The cellular distribution of fluorescently labeled arrestins provides a robust, sensitive, and universal assay for screening G protein-coupled receptors. Assay Drug Dev Technol 1: 21–30.PubMedCrossRefGoogle Scholar
  26. 26.
    Hudson CC, Oakley RH, Sjaastad MD et al (2006) High-content screening of known G protein-coupled receptors by arrestin translocation. Methods Enzymol 414:63–78.PubMedCrossRefGoogle Scholar
  27. 27.
    Ghosh RN, DeBiasio R, Hudson CC et al (2005) Quantitative cell-based high-content screening for vasopressin receptor agonists using transfluor technology. J Biomol Screen 10:476–484.PubMedCrossRefGoogle Scholar
  28. 28.
    Oakley RH, Hudson CC, Sjaastad MD et al (2006) The ligand-independent translocation assay: an enabling technology for screening orphan G protein-coupled receptors by arrestin recruitment. Methods Enzymol 414:50–63.PubMedCrossRefGoogle Scholar
  29. 29.
    Bertrand L, Parent S, Caron MG et al (2002)The BRET2/arrestin assay in stable recombinant cells: a platform to screen for compounds that interact with G protein-coupled receptors (GPCRS). J Recept Signal Transduct Res 22:533–541.PubMedCrossRefGoogle Scholar
  30. 30.
    Hamdan FF, Percherancier Y, Breton B et al (2006) Monitoring protein-protein interactions in living cells by bioluminescence resonance energy transfer (BRET). Curr Protoc Neurosci 5:5–23.PubMedGoogle Scholar
  31. 31.
    Vrecl M, Jorgensen R, Pogacnik A et al (2004) Development of a BRET2 screening assay using beta-arrestin 2 mutants. J Biomol Screen 9: 322–333.PubMedCrossRefGoogle Scholar
  32. 32.
    Hamdan FF, Audet M, Garneau P et al (2005) High-throughput screening of G protein-coupled receptor antagonists using a bioluminescence resonance energy transfer 1-based beta-arrestin2 recruitment assay. J Biomol Screen 10:463–475.PubMedCrossRefGoogle Scholar
  33. 33.
    Heding A (2004) Use of the BRET 7TM receptor/beta-arrestin assay in drug discovery and screening. Expert Rev Mol Diagn 4:403–411.PubMedCrossRefGoogle Scholar
  34. 34.
    van Der Lee MM, Bras M, van Koppen CJ et al (2008) Beta-Arrestin recruitment assay for the identification of agonists of the sphingosine 1-phosphate receptor EDG1. J Biomol Screen 13:986–998.CrossRefGoogle Scholar
  35. 35.
    Zhao X, Jones A, Olson KR et al (2008) A homogeneous enzyme fragment complementation-based beta-arrestin translocation assay for high-throughput screening of G-protein-coupled receptors. J Biomol Screen13:737–747.PubMedCrossRefGoogle Scholar
  36. 36.
    McGuinness D, Maliksay A, Visconti R et al (2009) Characterizing cannabinoid CB2 receptor ligands using DiscoveRx PathHunter beta-arrestin assay. J Biomol Screen 14:49–58.PubMedCrossRefGoogle Scholar
  37. 37.
    Wetter JA, Revankar C, Hanson BJ (2009) Utilization of the Tango beta-arrestin recruitment technology for cell-based EDG receptor assay development and interrogation. J Biomol Screen 14:1134–1141.PubMedCrossRefGoogle Scholar
  38. 38.
    Doucette C, Vedik K, Koepnick E et al (2009) Kappa opioid receptor screen with the Tango beta-arrestin recruitment technology and characterization of hits with second-messenger assays. J Biomol Screen 14:381–394.PubMedCrossRefGoogle Scholar
  39. 39.
    Yan YX, Boldt-Houle DM, Tillotson BP et al (2002) Cell-based high-throughput screening assay system for monitoring G protein-coupled receptor activation using beta-galactosidase enzyme complementation technology. J Biomol Screen 7:451–459.PubMedCrossRefGoogle Scholar
  40. 40.
    van der Lee MM, Blomenrohr M, van der Doelen AA et al (2009) Pharmacological characterization of receptor redistribution and beta-arrestin recruitment assays for the cannabinoid receptor 1. J Biomol Screen 14:811–823.PubMedCrossRefGoogle Scholar
  41. 41.
    Hanson BJ, Wetter J, Bercher MR et al (2009) A homogeneous fluorescent live-cell assay for measuring 7-transmembrane receptor activity and agonist functional selectivity through beta-arrestin recruitment. J Biomol Screen 14:798–810.PubMedCrossRefGoogle Scholar
  42. 42.
    Laporte SA, Oakley RH, Holt JA et al (2000) The interaction of beta-arrestin with the AP-2 adaptor is required for the clustering of beta 2-adrenergic receptor into clathrin-coated pits. J Biol Chem 275:23120–23126.PubMedCrossRefGoogle Scholar
  43. 43.
    Schmid CL, Raehal KM, Bohn LM (2008) Agonist-directed signaling of the serotonin 2A receptor depends on beta-arrestin-2 interactions in vivo. Proc Natl Acad Sci USA 105:1079–1084.PubMedCrossRefGoogle Scholar
  44. 44.
    Kinzer-Ursem TL, Linderman JJ (2007) Both ligand- and cell-specific parameters control ligand agonism in a kinetic model of G protein-coupled receptor signaling. PLoS Comput Biol 3:e6.PubMedCrossRefGoogle Scholar
  45. 45.
    Kennedy MJ, Ehlers MD (2006) Organelles and trafficking machinery for postsynaptic plasticity. Ann Rev Neurosci 29:325–362.PubMedCrossRefGoogle Scholar
  46. 46.
    Zhang J, Vinuela A, Neely MH et al (2007) Inhibition of the dopamine D1 receptor signaling by PSD-95. J Biol Chem 282:15778–15789.PubMedCrossRefGoogle Scholar
  47. 47.
    Xia Z, Gray JA, Compton-Toth BA et al (2003) A direct interaction of PSD-95 with 5-HT2A serotonin receptors regulates receptor trafficking and signal transduction. J Biol Chem 278:21901–21908.PubMedCrossRefGoogle Scholar
  48. 48.
    Abbas AI, Yadav PN, Yao WD et al (2009) PSD-95 is essential for hallucinogen and atypical antipsychotic drug actions at serotonin receptors. J Neurosci 29:7124–7136.PubMedCrossRefGoogle Scholar
  49. 49.
    Urban JD, Clarke WP, von Zastrow M et al (2007) Functional selectivity and classical concepts of quantitative pharmacology. J Pharmacol Exp Ther 320:1–13.PubMedCrossRefGoogle Scholar
  50. 50.
    KenakinT (2007) Functional selectivity through protean and biased agonism: who steers the ship? Mol Pharmacol 72:1393–1401.Google Scholar
  51. 51.
    Rajagopal S K, Rajagopal K, Lefkowitz RJ (2010) Teaching old receptors new tricks: biasing seven-transmembrane receptors. Nat Rev Drug Discov 9:373–386.PubMedCrossRefGoogle Scholar
  52. 52.
    Pierce KL, Luttrell LM, Lefkowitz RJ (2001) New mechanisms in heptahelical receptor signaling to mitogen activated protein kinase cascades. Oncogene 20:1532–1539.PubMedCrossRefGoogle Scholar
  53. 53.
    Luttrell LM, Lefkowitz RJ (2002) The role of beta-arrestins in the termination and transduction of G-protein-coupled receptor signals. J Cell Sci 115:455–465.PubMedGoogle Scholar
  54. 54.
    Bohn LM, Lefkowitz RJ, Gainetdinov RR et al (1999) Enhanced morphine analgesia in mice lacking beta-arrestin 2. Science 286:2495–2498.PubMedCrossRefGoogle Scholar
  55. 55.
    Bohn LM, Gainetdinov RR, Lin FT et al (2000) Mu-opioid receptor desensitization by beta-arrestin-2 determines morphine tolerance but not dependence. Nature 408:720–723.PubMedCrossRefGoogle Scholar
  56. 56.
    Bohn LM, Lefkowitz RJ, Caron MG (2002) Differential mechanisms of morphine antinociceptive tolerance revealed in beta-arrestin-2 knock-out mice. J Neurosci 22:10494–10500.PubMedGoogle Scholar
  57. 57.
    Gainetdinov RR, Premont RT, Bohn LM et al (2004) Desensitization of G protein-coupled receptors and neuronal functions. Ann Rev Neurosci 27:107–144.PubMedCrossRefGoogle Scholar
  58. 58.
    Raehal KM, Walker JK, Bohn LM (2005) Morphine side effects in beta-arrestin 2 knockout mice. J Pharmacol Exp Ther 314:1195–1201.PubMedCrossRefGoogle Scholar
  59. 59.
    Ren XR, Reiter E, Ahn S et al (2005) Different G protein-coupled receptor kinases govern G protein and beta-arrestin-mediated signaling of V2 vasopressin receptor. Proc Natl Acad Sci USA 102:1448–1453.PubMedCrossRefGoogle Scholar
  60. 60.
    Charest PG, Oligny-Longpre G, Bonin H et al (2007) The V2 vasopressin receptor stimulates ERK1/2 activity independently of heterotrimeric G protein signalling. Cell Signal 19:32–41.PubMedCrossRefGoogle Scholar
  61. 61.
    Ahn S, Nelson CD, Garrison TR et al (2003) Desensitization, internalization, and signaling functions of beta-arrestins demonstrated by RNA interference. Proc Natl Acad Sci USA 100:1740–1744.PubMedCrossRefGoogle Scholar
  62. 62.
    Tohgo A, Pierce KL, Choy EW et al (2002) Beta-arrestin scaffolding of the ERK cascade enhances cytosolic ERK activity but inhibits ERK-mediated transcription following angiotensin AT1a receptor stimulation. J Biol Chem 277:9429–9436.PubMedCrossRefGoogle Scholar
  63. 63.
    Shenoy SK, Drake MT, Nelson CD et al (2006) Beta-arrestin-dependent, G protein-independent ERK1/2 activation by the beta2 adrenergic receptor. J Biol Chem 281:1261–1273.PubMedCrossRefGoogle Scholar
  64. 64.
    Luttrell LM, Roudabush FL, Choy EW et al (2001) Activation and targeting of extracellular signal-regulated kinases by beta-arrestin scaffolds. Proc Natl Acad Sci USA 98:2449–2454.PubMedCrossRefGoogle Scholar
  65. 65.
    Beaulieu JM, Sotnikova TD, Marion S et al (2005) An Akt/beta-arrestin 2/PP2A signaling complex mediates dopaminergic neurotransmission and behavior. Cell 122:261–273.PubMedCrossRefGoogle Scholar
  66. 66.
    Wei H, Ahn S, Shenoy SK et al (2003) Independent beta-arrestin 2 and G protein-mediated pathways for angiotensin II activation of extracellular signal-regulated kinases 1 and 2. Proc Natl Acad Sci USA 100:10782–10787.PubMedCrossRefGoogle Scholar
  67. 67.
    Kohout TA, Nicholas SL, Perry SJ et al (2004) Differential desensitization, receptor phosphorylation, beta-arrestin recruitment, and ERK1/2 activation by the two endogenous ligands for the CC chemokine receptor 7. J Biol Chem 279:23214–23222.PubMedCrossRefGoogle Scholar
  68. 68.
    Abbas A and Roth BL (2008) Arresting serotonin. Proc Natl Acad Sci USA 105:831–832.PubMedCrossRefGoogle Scholar
  69. 69.
    Bohn LM, Dykstra LA, Lefkowitz RJ et al (2004) Relative opioid efficacy is determined by the complements of the G protein-coupled receptor desensitization machinery. Mol Pharmacol 66:106–112.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Molecular TherapeuticsThe Scripps Research InstituteJupiterUSA

Personalised recommendations