Skip to main content

DNA Detection Using Functionalized Conducting Polymers

  • Protocol
  • First Online:
Bioconjugation Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 751))

Abstract

A well-defined DNA bioconjugated surface is a key component in the development of efficient biosensor platforms for diseases, ranging from point-of-care detection of pathogens and viruses to personalized diagnostics and medication, as well as for drug discovery, forensics, and food technology. We herein describe a universal and rapid methodology to construct such surfaces based on functionalized conducting polymer thin films. The conducting polymers combine sensing properties with the ability to act as signal transducers for the biorecognition event. We have shown that biosensor designs based on conducting polymers display a number of advantageous features, such as a long-term stability, label-free sensing, fast analysis, and the capability to apply both electrochemical and fluorescent protocols for DNA detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gooding, J. J. (2002) Electrochemical DNA hybridization biosensors. Electroanalysis 14, 1149–1156.

    Article  CAS  Google Scholar 

  2. Christopoulos, T. K. (1999) Nucleic acid analysis. Anal. Chem. 71, 425R-438R.

    Article  CAS  Google Scholar 

  3. Wang, J. (2002) Electrochemical nucleic acid biosensors. Anal. Chim. Acta 469, 63–71.

    Article  CAS  Google Scholar 

  4. Wang, J. (2005) Carbon-nanotube based electrochemical biosensors: A review. Electroanalysis 17, 7–14.

    Article  CAS  Google Scholar 

  5. Wang, J. (2000) From DNA biosensors to gene chips. Nucleic Acids Res. 28, 3011–3016.

    Article  PubMed  CAS  Google Scholar 

  6. Sassolas, A. Leca-Bouvier, B. D., and Blum, L. J. (2008) DNA biosensors and microarrays. Chem. Rev. 108, 109–139.

    Article  PubMed  CAS  Google Scholar 

  7. Katz, E. and Willner, I. (2003) Probing biomolecular interactions at conductive and semiconductive surfaces by impedance spectroscopy: Routes to impedimetric immunosensors, DNA-Sensors, and enzyme biosensors. Electroanalysis 15, 913–947.

    Article  CAS  Google Scholar 

  8. Kjallman, T. H. M., Peng, H., Soeller, C., and Travas-Sejdic, J. (2008) Effect of probe density and hybridization temperature on the response of an electrochemical hairpin-DNA sensor. Anal. Chem. 80, 9460–9466.

    Article  PubMed  CAS  Google Scholar 

  9. Fan, C., Plaxco, K. W., and Heeger, A. J. (2003) Electrochemical interrogation of conformational changes as a reagentless method for the sequence-specific detection of DNA. Proc. Natl. Acad. Sci. USA 100, 9134–9137.

    Article  PubMed  CAS  Google Scholar 

  10. Everett, W. R., Welch, T. L., Reed, L., and Fritschfaules, I. (1995) Potential-dependent stability of self-assembled organothiols on gold electrodes in methylene-chloride. Anal. Chem. 67, 292–298.

    Article  CAS  Google Scholar 

  11. Beulen, M. W. J., Kastenberg, M. I., van Veggel, F., and Reinhoudt, D. N. (1998) Electrochemical stability of self-assembled monolayers on gold. Langmuir 14, 7463–7467.

    Article  CAS  Google Scholar 

  12. Zhong, C. J. and Porter, M. D. (1997) Fine structure in the voltammetric desorption curves of alkanethiolate monolayers chemisorbed at gold. J. Electroanal. Chem. 425, 147–153.

    Article  CAS  Google Scholar 

  13. Kirchmeyer, S., and Reuter, K. (2005) Scientific importance, properties and growing applications of poly( 3,4-ethylenedioxythiophene). J. Mater. Chem. 15, 2077–2088.

    Article  CAS  Google Scholar 

  14. Groenendaal, L., Zotti, G., Aubert, P. H., Waybright, S. M., and Reynolds, J. R. (2003) Electrochemistry of poly(3,4-alkylenedioxythiophene) derivatives. Adv. Mater. 15, 855–879.

    Article  CAS  Google Scholar 

  15. Groenendaal, B. L., Jonas, F., Freitag, D., Pielartzik, H. and Reynolds, J. R. (2000) Poly(3,4-ethylenedioxythiophene) and its deri­vatives: Past, present, and future. Adv. Mater. 12, 481–494.

    Article  CAS  Google Scholar 

  16. Pei, Q. B., Zuccarello, G., Ahlskog, M., and Inganas, O. (1994) Electrochromic and highly stable poly(3,4-ethylenedioxythiophene) switches between opaque blue-black and transparent sky blue. Polymer 35, 1347–1351.

    Article  CAS  Google Scholar 

  17. Travas-Sejdic, J. and Soeller, C. (2008) Sensing genes using conducting polymers, nanoparticles, and nanotubes. In Handbook of Organic Electronics and Photonics, Volume 1 (Nalwa, H.S., ed.), American Scientific Publishers, Valencia, CA, pp. 365–403.

    Google Scholar 

  18. Luo, S. C., Ali, E. M., Tansil, N. C., Yu, H. H., Gao, S., Kantchev, E. A. B., and Ying, J. Y. (2008) Poly(3,4-ethylenedioxythiophene) (PEDOT) nanobiointerfaces: Thin, ultrasmooth, and functionalized PEDOT films with in vitro and in vivo biocompatibility. Langmuir 24, 8071–8077.

    Article  PubMed  CAS  Google Scholar 

  19. Peng, H., Soeller, C., Cannell, M. B., Bowmaker, G. A., Cooney, R. P., and Travas-Sejdic, J. (2006) Electrochemical detection of DNA hybridization amplified by nanoparticles. Biosens. Bioelectron. 21, 1727–1736.

    Article  PubMed  CAS  Google Scholar 

  20. Peng, H.; Soeller, C., Vigar, N., Kilmartin, P. A., Cannell, M. B., Bowmaker, G. A., Cooney, R. P. and Travas-Sejdic, J. (2005) Label-free electrochemical DNA sensor based on functionalized conducting copolymer. Biosens. Bioelectron. 20, 1821–1828.

    Article  PubMed  CAS  Google Scholar 

  21. Martin, D. C. (2007) Organic electronics: Polymers manipulate cells. Nat. Mater. 6, 626–627.

    Article  PubMed  CAS  Google Scholar 

  22. Isaksson, J., Kjall, P., Nilsson, D., Robinson, N. D., Berggren, M., and Richter-Dahlfors, A. (2007) Electronic control of Ca2+ signaling in neuronal cells using an organic electronic ion pump. Nat. Mater. 6, 673–679.

    Article  PubMed  CAS  Google Scholar 

  23. Richardson-Burns, S. M., Hendricks, J. L., Foster, B., Povlich, L. K., Kim, D. H., and Martin, D. C. (2007) Polymerization of the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) around living neural cells. Biomaterials 28, 1539–1552.

    Article  PubMed  CAS  Google Scholar 

  24. Peng, H., Soeller, C., and Travas-Sejdic, J. (2007) Novel conducting polymers for DNA sensing. Macromolecules 40, 909–914.

    Article  CAS  Google Scholar 

  25. Peng, H., Soeller, C., Vigar, N. A., Caprio, V., and Travas-Sejdic, J. (2007) Label-free detection of DNA hybridization based on a novel functionalized conducting polymer. Biosens. Bioelectron 22, 1868–1873.

    Article  PubMed  CAS  Google Scholar 

  26. Ali, E. M., Kantchev, E. A. B., Yu, H. H., and Ying, J. Y., (2007) Conductivity shift of polyethylenedioxythiophenes in aqueous solutions from side-chain charge perturbation. Macromolecules 40, 6025–6027.

    Article  CAS  Google Scholar 

  27. Luo, S. C., Xie, H., Chen, N. Y. and Yu, H. H. (2009) Trinity DNA detection platform by ultrasmooth and functionalized PEDOT biointerfaces. ACS Appl. Mater. Interfaces 1, 1414–1419.

    Article  PubMed  CAS  Google Scholar 

  28. Lima, A., Schottland, P., Sadki, S., and Chevrot, C. (1998) Electropolymerization of 3,4-ethylenedioxythiophene and 3,4-ethylenedioxythiophene methanol in the presence of dodecylbenzenesulfonate. Synth. Met. 93, 33–41.

    Article  CAS  Google Scholar 

  29. Gao, Z. Q., Binyamin, G., Kim, H. H., Barton, S. C., Zhang, Y. C., and Heller, A., (2002) Electrodeposition of redox polymers and co-electrodeposition of enzymes by coordinative crosslinking. Angew. Chem. Int. Ed. Engl. 41, 810–813.

    Article  PubMed  CAS  Google Scholar 

  30. Lassalle, N., Mailley, P., Vieil, E., Livache, T., Roget, A., Correia, J. P., and Abrantes, L. M. (2001) Electronically conductive polymer grafted with oligonucleotides as electrosensors of DNA: Preliminary study of real time monitoring by in situ techniques. J. Electroanal. Chem. 509, 48–57.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

J.T.S. and H.P. thank the Royal Society New Zealand (Marsden Fund) and the Auckland UniServices for financial support. The work performed by H.H.Y. and S.C.L. has been supported by the Institute of Bioengineering and Nanotechnology (Biomedical Research Council, Agency for Science, Technology and Research, Singapore) and the RIKEN Advanced Science Institute (Japan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jadranka Travas-Sejdic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Travas-Sejdic, J., Peng, H., Yu, Hh., Luo, SC. (2011). DNA Detection Using Functionalized Conducting Polymers. In: Mark, S. (eds) Bioconjugation Protocols. Methods in Molecular Biology, vol 751. Humana Press. https://doi.org/10.1007/978-1-61779-151-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-151-2_27

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-150-5

  • Online ISBN: 978-1-61779-151-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics