Advertisement

Membrane Protein Digestion – Comparison of LPI HexaLane with Traditional Techniques

  • Ping Sui
  • Tasso Miliotis
  • Max Davidson
  • Roger Karlsson
  • Anders Karlsson
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 753)

Abstract

Membrane protein profiling and characterization is of immense importance for the understanding of vital processes taking place across cellular membranes. Traditional techniques used for soluble proteins, such as 2D gel electrophoresis, are sometimes not entirely applicable to membrane protein targets, due to their low abundance and hydrophobic character. New tools have been developed that will accelerate research on membrane protein targets. Lipid-based protein immobilization (LPI) is the core technology in a new approach that enables immobilization and digestion of native membrane proteins inside a flow cell format. The presented method is described in the context of comparing the method to traditional approaches where the sample amount that is digested and analyzed is the same.

Key words

Membrane protein immobilization LPI profiling in-gel in-solution sequential digestion 

References

  1. 1.
    Ulmschneider, M. B., Sansom, M. S., and Di Nola, A. (2005) Properties of integral membrane protein structures: derivation of an implicit membrane potential. Proteins 59:252–265.PubMedCrossRefGoogle Scholar
  2. 2.
    Terstappen, G. C., and Reggiani, A. (2001) In silico research in drug discovery. Trends Pharmacol Sci 22(1):23–26.PubMedCrossRefGoogle Scholar
  3. 3.
    Macher, B. A., Yen, T. Y. (2007) Protein at membrane surfaces-a review of approaches. Mol Biosyst 3:705–713.PubMedCrossRefGoogle Scholar
  4. 4.
    Santoni, V., Molloy, M., and Rabilloud, T. (2000) Membrane proteins and proteomics: Un amour impossible? Electrophoresis 21:1054–1070.PubMedCrossRefGoogle Scholar
  5. 5.
    Stevens, T. J., and Arkin, I. T. (2000) Do more complex organisms have a greater proportion of membrane proteins in their genomes? Proteins 39:417–420.PubMedCrossRefGoogle Scholar
  6. 6.
    Wallin, E., and Heijine, G. (1998) Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci 7:1029–1038.PubMedCrossRefGoogle Scholar
  7. 7.
    Blonder, J., Conrads, T. P., Yu, L. R., Terunuma, A., Janini, G. M., Issaq, H. J., Vogel, J. C., and Veenstra, T. D. (2004) A detergent– and cyanogen bromide- free method for integral membrane proteomics: application to Halobacterium purple membranes and the human epidermal membrane proteome. Proteomics 4(1):31–45.PubMedCrossRefGoogle Scholar
  8. 8.
    Chen, E. I., Cociorva, D., Norris, J. L., and Yates, J. R. (2007) Optimization of mass spectrometry-compatible surfactants for shotgun proteomics. J Proteome Res 6(7):2529–2538.PubMedCrossRefGoogle Scholar
  9. 9.
    Mitra, S. K., Gantt, J. A., Ruby, J. F., Clouse, S. D., and Goshe, M. B. (2007) Membrane proteomic analysis of Arabidopsis thaliana using alternative solubilization techniques. J Proteome Res 6(5):1933–1950.PubMedCrossRefGoogle Scholar
  10. 10.
    Russell, W. K., Park, Z. Y., and Russel, D. H. (2001) Proteolysis in mixed organic-aqueous solvent systems: applications for peptide mass mapping using mass spectrometry. Anal Chem 73(11):2682–2685.PubMedCrossRefGoogle Scholar
  11. 11.
    Soskic, V., and Godovac-Zimmermann, J. (2001) Improvement of an in-gel tryptic digestion method for matrix-assisted laser desorption/ionization-time of flight mass spectrometry peptide mapping by sue of volatile solubilizing agents. Proteomics 1(11):1364–1367.PubMedCrossRefGoogle Scholar
  12. 12.
    Zhang, N., Chen, R., Young, N., Wishart, D., Winter, P., Weiner, J. H., and Li, L. (2007) Comparison of SDS- and methanol-assisted protein solubilization and digestion methods for Escherichia coli membrane proteome analysis by 2-D LC-MS/MS. Proteomics 7(4):484–493.PubMedCrossRefGoogle Scholar
  13. 13.
    Washburn, M. P., Wolters, D., and Yates, J. R. (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19(3):242–247.PubMedCrossRefGoogle Scholar
  14. 14.
    Martosella, J., Zolotarjova, N., Liu, H., Moyer, S. C., Perkins, P. D., and Boyes, B. E. (2006) High recovery HPLC separation of lipid rafts for membrane proteome analysis. J Proteome Res 5(6):1301–1312.PubMedCrossRefGoogle Scholar
  15. 15.
    Da Cruz, S., Xenarios, I., Langridge, J., Vilbois, F., Parone, P. A., and Marinou, J. C. (2003) Proteomic analysis of the mouse liver mitochondrial inner membrane. J Biol Chem 278(42):41566–41571.PubMedCrossRefGoogle Scholar
  16. 16.
    Lasonder, E., Ishihama, Y., Andersen, J. S., Vermunt, A. M., Pain, A., Sauerwein, R. W., Eling, W. M., Hall, N., Waters, A. P., Stunnenberg, H. G., and Mann, M. (2002) Analysis of the Plasmodium falciparum proteome by high-accuracy mass spectrometry. Nature 419(6909):537–542.PubMedCrossRefGoogle Scholar
  17. 17.
    Mhatre, R., Woodard, J. and Zeng, C. (1999) Strategies for locating disulfide bonds in a monoclonal antibody via mass spectrometry. Rapid Commun Mass Spectrom 13(24):2503–2510.PubMedCrossRefGoogle Scholar
  18. 18.
    Zhang, W., Marzilli, L. A., Rouse, J. C., and Czupryn, M. J. (2002) Complete disulfide bond assignment of a recombinant immunoglobulin G4 monoclonal antibody. Anal Biochem 311(1):1–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Quach, T. T., Richards, D. P., Zheng, J., Keller, B. O., and Li, L. (2003) Development and applications of in-gel CNBr/tryptic digestion combined with mass spectrometry for the analysis of membrane proteins. J Proteome Res 2(5):543–552.PubMedCrossRefGoogle Scholar
  20. 20.
    Ball, L. E., Oatis, J. E. Jr., Dharmasiri, K., Busman, M., Wang, J., Cowden, L. B., Galijatovic, A., Chen, N., Crouch, R. K., and Knapp, D. R. (1998) Mass spectrometric analysis of integral membrane proteins: application to complete mapping of bacteriorhodopsins and rhodopsin. Protein Sci 7(3):758–764.PubMedGoogle Scholar
  21. 21.
    Wu, C. C., and Yates, J. R. (2003) The application of mass spectrometry to membrane proteomics. Nat Biotechnol 21(3):262–267.PubMedCrossRefGoogle Scholar
  22. 22.
    Rodriguez-Ortega, M. J., Norais, N., Bensi, G., Liberatori, S., Capo, S., Mora, M., Scarselli, M., Doro, F., Ferrari, G., Garaguso, I., Maggi, T., Neumann, A., Covre, A., Telford, J. L., and Grandi, G. (2006) Characterization and identification of vaccine candidate proteins through analysis of the group A Streptococcus surface proteome. Nat Biotechnol 24(2):191–197.PubMedCrossRefGoogle Scholar
  23. 23.
    Yu. Y. Q., Gilar, M., and Gebler, J. C. (2004) A complete peptide mapping of membrane proteins: a novel surfactant aiding the enzymatic digestion of bacteriorhodopsin. Rapid Commun Mass Spectrom 18:711–715.Google Scholar
  24. 24.
    Norris, J. L., Porter, N. A., and Caprioli, R. M. (2003) Mass spectrometry of intracellular and membrane proteins using cleavable detergents. Anal Chem 75(23):6642–6647.PubMedCrossRefGoogle Scholar
  25. 25.
    Lochner, N., Pittner, F., Wirth, M., and Gabor, F. (2003) Preparation, characterization and application of artificial Caco-2 cell surfaces in the silver nanoparticle enhanced fluorescence technique. J Control Release 89:249–259.PubMedCrossRefGoogle Scholar
  26. 26.
    Speer, A. E. and Wu, C. C. (2007) Proteomics of integral membrane proteins – theory and application. Chem Rev 107:3687–3714.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Ping Sui
    • 1
  • Tasso Miliotis
    • 1
  • Max Davidson
    • 2
  • Roger Karlsson
    • 3
  • Anders Karlsson
    • 4
  1. 1.AstraZeneca R&DMölndalSweden
  2. 2.Nanoxis ABGothenburgSweden
  3. 3.Department of ChemistryUniversity of GothenburgGothenburgSweden
  4. 4.Nanoxis ABGothenburgSweden

Personalised recommendations