Skip to main content

Membrane Protein Digestion – Comparison of LPI HexaLane with Traditional Techniques

  • Protocol
  • First Online:
Gel-Free Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 753))

Abstract

Membrane protein profiling and characterization is of immense importance for the understanding of vital processes taking place across cellular membranes. Traditional techniques used for soluble proteins, such as 2D gel electrophoresis, are sometimes not entirely applicable to membrane protein targets, due to their low abundance and hydrophobic character. New tools have been developed that will accelerate research on membrane protein targets. Lipid-based protein immobilization (LPI) is the core technology in a new approach that enables immobilization and digestion of native membrane proteins inside a flow cell format. The presented method is described in the context of comparing the method to traditional approaches where the sample amount that is digested and analyzed is the same.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ulmschneider, M. B., Sansom, M. S., and Di Nola, A. (2005) Properties of integral membrane protein structures: derivation of an implicit membrane potential. Proteins 59:252–265.

    Article  PubMed  CAS  Google Scholar 

  2. Terstappen, G. C., and Reggiani, A. (2001) In silico research in drug discovery. Trends Pharmacol Sci 22(1):23–26.

    Article  PubMed  CAS  Google Scholar 

  3. Macher, B. A., Yen, T. Y. (2007) Protein at membrane surfaces-a review of approaches. Mol Biosyst 3:705–713.

    Article  PubMed  CAS  Google Scholar 

  4. Santoni, V., Molloy, M., and Rabilloud, T. (2000) Membrane proteins and proteomics: Un amour impossible? Electrophoresis 21:1054–1070.

    Article  PubMed  CAS  Google Scholar 

  5. Stevens, T. J., and Arkin, I. T. (2000) Do more complex organisms have a greater proportion of membrane proteins in their genomes? Proteins 39:417–420.

    Article  PubMed  CAS  Google Scholar 

  6. Wallin, E., and Heijine, G. (1998) Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci 7:1029–1038.

    Article  PubMed  CAS  Google Scholar 

  7. Blonder, J., Conrads, T. P., Yu, L. R., Terunuma, A., Janini, G. M., Issaq, H. J., Vogel, J. C., and Veenstra, T. D. (2004) A detergent– and cyanogen bromide- free method for integral membrane proteomics: application to Halobacterium purple membranes and the human epidermal membrane proteome. Proteomics 4(1):31–45.

    Article  PubMed  CAS  Google Scholar 

  8. Chen, E. I., Cociorva, D., Norris, J. L., and Yates, J. R. (2007) Optimization of mass spectrometry-compatible surfactants for shotgun proteomics. J Proteome Res 6(7):2529–2538.

    Article  PubMed  CAS  Google Scholar 

  9. Mitra, S. K., Gantt, J. A., Ruby, J. F., Clouse, S. D., and Goshe, M. B. (2007) Membrane proteomic analysis of Arabidopsis thaliana using alternative solubilization techniques. J Proteome Res 6(5):1933–1950.

    Article  PubMed  CAS  Google Scholar 

  10. Russell, W. K., Park, Z. Y., and Russel, D. H. (2001) Proteolysis in mixed organic-aqueous solvent systems: applications for peptide mass mapping using mass spectrometry. Anal Chem 73(11):2682–2685.

    Article  PubMed  CAS  Google Scholar 

  11. Soskic, V., and Godovac-Zimmermann, J. (2001) Improvement of an in-gel tryptic digestion method for matrix-assisted laser desorption/ionization-time of flight mass spectrometry peptide mapping by sue of volatile solubilizing agents. Proteomics 1(11):1364–1367.

    Article  PubMed  CAS  Google Scholar 

  12. Zhang, N., Chen, R., Young, N., Wishart, D., Winter, P., Weiner, J. H., and Li, L. (2007) Comparison of SDS- and methanol-assisted protein solubilization and digestion methods for Escherichia coli membrane proteome analysis by 2-D LC-MS/MS. Proteomics 7(4):484–493.

    Article  PubMed  CAS  Google Scholar 

  13. Washburn, M. P., Wolters, D., and Yates, J. R. (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19(3):242–247.

    Article  PubMed  CAS  Google Scholar 

  14. Martosella, J., Zolotarjova, N., Liu, H., Moyer, S. C., Perkins, P. D., and Boyes, B. E. (2006) High recovery HPLC separation of lipid rafts for membrane proteome analysis. J Proteome Res 5(6):1301–1312.

    Article  PubMed  CAS  Google Scholar 

  15. Da Cruz, S., Xenarios, I., Langridge, J., Vilbois, F., Parone, P. A., and Marinou, J. C. (2003) Proteomic analysis of the mouse liver mitochondrial inner membrane. J Biol Chem 278(42):41566–41571.

    Article  PubMed  Google Scholar 

  16. Lasonder, E., Ishihama, Y., Andersen, J. S., Vermunt, A. M., Pain, A., Sauerwein, R. W., Eling, W. M., Hall, N., Waters, A. P., Stunnenberg, H. G., and Mann, M. (2002) Analysis of the Plasmodium falciparum proteome by high-accuracy mass spectrometry. Nature 419(6909):537–542.

    Article  PubMed  CAS  Google Scholar 

  17. Mhatre, R., Woodard, J. and Zeng, C. (1999) Strategies for locating disulfide bonds in a monoclonal antibody via mass spectrometry. Rapid Commun Mass Spectrom 13(24):2503–2510.

    Article  PubMed  CAS  Google Scholar 

  18. Zhang, W., Marzilli, L. A., Rouse, J. C., and Czupryn, M. J. (2002) Complete disulfide bond assignment of a recombinant immunoglobulin G4 monoclonal antibody. Anal Biochem 311(1):1–9.

    Article  PubMed  CAS  Google Scholar 

  19. Quach, T. T., Richards, D. P., Zheng, J., Keller, B. O., and Li, L. (2003) Development and applications of in-gel CNBr/tryptic digestion combined with mass spectrometry for the analysis of membrane proteins. J Proteome Res 2(5):543–552.

    Article  PubMed  CAS  Google Scholar 

  20. Ball, L. E., Oatis, J. E. Jr., Dharmasiri, K., Busman, M., Wang, J., Cowden, L. B., Galijatovic, A., Chen, N., Crouch, R. K., and Knapp, D. R. (1998) Mass spectrometric analysis of integral membrane proteins: application to complete mapping of bacteriorhodopsins and rhodopsin. Protein Sci 7(3):758–764.

    PubMed  CAS  Google Scholar 

  21. Wu, C. C., and Yates, J. R. (2003) The application of mass spectrometry to membrane proteomics. Nat Biotechnol 21(3):262–267.

    Article  PubMed  CAS  Google Scholar 

  22. Rodriguez-Ortega, M. J., Norais, N., Bensi, G., Liberatori, S., Capo, S., Mora, M., Scarselli, M., Doro, F., Ferrari, G., Garaguso, I., Maggi, T., Neumann, A., Covre, A., Telford, J. L., and Grandi, G. (2006) Characterization and identification of vaccine candidate proteins through analysis of the group A Streptococcus surface proteome. Nat Biotechnol 24(2):191–197.

    Article  PubMed  CAS  Google Scholar 

  23. Yu. Y. Q., Gilar, M., and Gebler, J. C. (2004) A complete peptide mapping of membrane proteins: a novel surfactant aiding the enzymatic digestion of bacteriorhodopsin. Rapid Commun Mass Spectrom 18:711–715.

    Google Scholar 

  24. Norris, J. L., Porter, N. A., and Caprioli, R. M. (2003) Mass spectrometry of intracellular and membrane proteins using cleavable detergents. Anal Chem 75(23):6642–6647.

    Article  PubMed  CAS  Google Scholar 

  25. Lochner, N., Pittner, F., Wirth, M., and Gabor, F. (2003) Preparation, characterization and application of artificial Caco-2 cell surfaces in the silver nanoparticle enhanced fluorescence technique. J Control Release 89:249–259.

    Article  PubMed  CAS  Google Scholar 

  26. Speer, A. E. and Wu, C. C. (2007) Proteomics of integral membrane proteins – theory and application. Chem Rev 107:3687–3714.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Sui, P., Miliotis, T., Davidson, M., Karlsson, R., Karlsson, A. (2011). Membrane Protein Digestion – Comparison of LPI HexaLane with Traditional Techniques. In: Gevaert, K., Vandekerckhove, J. (eds) Gel-Free Proteomics. Methods in Molecular Biology, vol 753. Humana Press. https://doi.org/10.1007/978-1-61779-148-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-148-2_9

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-147-5

  • Online ISBN: 978-1-61779-148-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics